球面磁悬浮万向飞轮转子轮盘优化设计
收稿日期: 2015-09-25
修回日期: 2015-11-01
网络出版日期: 2015-11-25
基金资助
国家自然科学基金(51475472)
Optimal design of rotary table for spherical rotor of magnetically suspending gambling flywheel
Received date: 2015-09-25
Revised date: 2015-11-01
Online published: 2015-11-25
Supported by
National Natural Science Foundation of China (51475472)
为实现磁悬浮飞轮的磁路解耦,消除磁轴承相互干扰,提出一种球面磁悬浮万向飞轮转子方案,采用轴向和径向两个球面磁阻式磁轴承控制转子的3个平动自由度,结合洛伦兹力磁轴承实现了磁悬浮飞轮转子五自由度全主动控制、全通道磁路解耦,以精确控制飞轮转子万向偏转,为提升磁悬浮飞轮姿态控制力矩带宽和姿态敏感精度提供了方案支持。根据球面转子结构特性,以质量为优化目标,以一阶共振频率、最大等效应力、刚体位移、极转动惯量、惯量比、质心与形心距离为约束条件,利用多学科优化软件iSIGHT集成ANSYS有限元分析软件,选取序列二次规划算法,对球面转子轮盘进行优化设计。结果表明,在满足设计指标的同时,轮盘质量降低了2.98%,质心与形心的距离大幅降低了1个数量级,仅为12 μm,转子高速旋转时的刚体位移为13.65 μm,有效保证了球面转子在工作时的稳定性和可靠性。
王卫杰 , 任元 , 刘强 , 樊亚洪 . 球面磁悬浮万向飞轮转子轮盘优化设计[J]. 航空学报, 2016 , 37(9) : 2874 -2883 . DOI: 10.7527/S1000-6893.2015.0307
In order to achieve magnetic circuit decoupling of magnetically suspending flywheel (MSFW), and to eliminate the magnetic bearing interference, one spherical rotor of the magnetically suspending gambling flywheel(MSGFW) is proposed. Magnetic bearings with both axial and radial spherical magnetic resistance types are used to control the rotor's 3 translational degrees of freedom (DOFs); combining with the Lorentz force magnetic bearing, we achieve the rotor's 5 DOFs active control and all channel magnetic circuit decoupling so that the rotor's universal deflection is precisely controlled. The project support is provided to improve the MSFW attitude control moment bandwidth and attitude sensitive precision. Based on the structure of spherical rotor, taking the mass of rotary table as the optimization objective, considering the constraint conditions including the first order resonance frequency, maximum equivalent stress, rigid body displacement, polar inertial moment, ratio of inertial moment, and distance between centroid and geometric center, using the software of multidisciplinary optimization iSIGHT to integrate the software of finite element analysis ANSYS, we optimally design the rotary table of spherical rotor by NLPQL algorithm. The results indicate that the mass of rotary table reduces by 2.98 %, the distance between centroid and geometric center is lowered by 1 order of magnitude, only 12 μm, and the rigid body displacement of rotor at high rotation speed is 13.65 μm. The stability and reliability of spherical rotor in operation are guaranteed effectively.
[1] 侯二永, 刘昆, 单小强. 扁平型外转子混合磁悬浮飞轮动力学分析[J]. 宇航学报, 2011, 32(5): 998-1004. HOU E Y, LIU K, SHAN X Q. Analysis of dynamics characteristics of hybrid magnetic suspension flywheel with oblate external rotor [J]. Journal of Astronautics, 2011, 32(5): 998-1004 (in Chinese).
[2] 王曦, 石泳, 樊亚洪, 等. 磁悬浮飞轮用新型异极性永磁偏置径向磁轴承[J]. 宇航学报, 2014, 35(12): 1457-1464. WANG X, SHI Y, FAN Y H, et al. A new type of heteropolar radial magnetic bearing biased with permanent magnet for magnetically suspended flywheel [J]. Journal of Astronautics, 2014, 35(12): 1457-1464 (in Chinese).
[3] 王春娥, 房建成, 汤继强, 等. 磁悬浮反作用飞轮热设计方法与实验研究[J]. 航空学报, 2011, 32(4): 598-607. WANG C E,FANG J C, TANG J Q, et al. Thermal design method and experimental research of magnetically suspended reaction flywheel [J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(4): 598-607 (in Chinese).
[4] LIU Q, FANG J C, HAN B C. Novel electromagnetic repeated launch locking/unlocking device (RLLUD) based on self-locking for magnetic bearing flywheel [J]. Sensors and Actuators A, 2012(175): 116-126.
[5] 刘强, 房建成, 武登云. 磁悬浮飞轮转子优化设计与实验[J]. 机械设计与制造, 2015(2): 111-114. LIU Q, FANG J C, WU D Y. Optimization and experiment of magnetic bearing wheel rotor [J]. Machinery Design & Manufacture,2015(2): 111-114 (in Chinese).
[6] 刘虎, 房建成, 刘刚. 基于磁悬浮动量轮微框架能力的卫星滚动-偏航姿态稳定控制研究[J]. 宇航学报, 2010, 31(4): 1063-1069. LIU H, FANG J C, LIU G. Study on satellite roll-yaw attitude stability control based on magnetically suspending momentum flywheel gimbal capability [J]. Journal of Astronautics, 2010, 31(4): 1063-1069 (in Chinese).
[7] 韩邦成, 虎刚, 房建成. 50Nms磁悬浮反作用飞轮转子优化设计方法的研究[J]. 宇航学报, 2006, 27(3): 536-540. HAN B C, HU G, FANG J C. Optimization design of magnetic bearing reaction wheel rotor [J]. Journal of Astronautics, 2006, 27(3): 536-540 (in Chinese).
[8] 叶全红, 李红, 韩邦成. 基于iSIGHT的磁悬浮反作用飞轮优化设计[J]. 宇航学报, 2007, 28(6): 1619-1623. YE Q H, LI H, HAN B C. Optimization design of magnetic bearing reaction wheel rotor using iSIGHT software[J]. Journal of Astronautics, 2007, 28(6): 1619-1623 (in Chinese).
[9] RAFIQUE A F, HE L S, KAMRAN A, et al. Multidisciplinary design of air launched satellite launch vehicle: performance comparison of heuristic optimization methods [J]. Acta Astronautica, 2010, 67(7-8): 826-844.
[10] 韩邦成, 虎刚, 房建成. 磁悬浮控制力矩陀螺高速转子的优化设计[J]. 光学精密工程, 2006, 14(4): 662-666. HAN B C, HU G, FANG J C. Optimization design of magnetic suspended gyroscope rotor[J]. Optics and Precision Engineering, 2006, 14(4): 662-666 (in Chinese).
[11] 韩邦成, 袁倩. 大型磁悬浮CMG转子的组合优化策略[J]. 宇航学报, 2012, 33(2): 275-280. HAN B C, YUAN Q. The combinatorial optimization strategy for large-sized magnetic suspension rotor in CMG system [J]. Journal of Astronautics, 2012, 33(2): 275-280 (in Chinese).
[12] 孙津济. 磁悬浮飞轮用新型永磁偏置主动磁轴承结构与设计方法研究[D]. 北京: 北京航空航天大学, 2010: 133-134. SUN J J. Study on new permanent magnet biased active magnetic bearing structure and design method in magnetically suspended flywheel application[D]. Beijing: Beihang University, 2010: 133-134 (in Chinese).
[13] 刘彬, 房建成, 刘刚. 一种磁悬浮陀螺飞轮方案设计与关键技术分析[J]. 航空学报, 2011, 32(8): 1478-1487. LIU B, FANG J C, LIU G. Design of a magnetically suspended gyro wheel and analysis of key technologies [J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(8): 1478-1487 (in Chinese).
[14] GERLACH B, EHINGER M, RAUE H K. Digital controller for a gimballing magnetic bearing reaction wheel[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2005: 1-6.
[15] 汤继强, 韩雪飞, 刘强. 微框架效应磁悬浮飞轮转子轮缘优化设计[J]. 光学精密工程, 2012, 20(9): 1991-1998. TANG J Q, HAN X F, LIU Q. Optimal design of rotor rim for magnetically suspended flywheel with vernier gimballing capacity[J]. Optics and Precision Engineering, 2012, 20(9): 1991-1998 (in Chinese).
[16] YOHJI O, HIROAKI K, KOUICHI K. New concept of miracle magnetic bearings[C]//Proceeding of the 9th International Symposium on Magnetic Bearings, 2004: 89-95.
[17] CHRISTIAN E, TILO S, RAINER N. Comparison of active magnetic bearings with and without permanent magnet bias[C]//Proceeding of the 9th International Symposium on Magnetic Bearings, 2004: 420-425.
[18] 孙津济, 房建成, 王曦, 等. 一种新型结构的永磁偏置径向磁轴承[J]. 电工技术学报, 2009, 24(11): 53-60. SUN J J, FANG J C, WANG X, et al. A new permanent magnet biased radial magnetic bearing [J]. Transactions of China Electrotechnical Society, 2009, 24(11): 53-60 (in Chinese).
[19] 樊亚洪, 张激扬, 王曦. 磁悬浮万向飞轮技术研究[C]//第五届中国磁悬浮轴承学术会议论文集. 长沙: 国防科学技术大学, 2013: 1-9. FAN Y H, ZHANG J Y, WANG X. Research on magnetically suspended gimbaling flywheel technology[C]//The 5th Proceedings of China Suspended Magnetically Bearing. Changsha: National University of Defense Technology, 2013: 1-9 (in Chinese).
[20] 李丽君, 樊亚洪, 袁军. 磁悬浮万向飞轮在卫星姿态机动中的应用[J]. 机械工程学报, 2015, 51(16): 206-212. LI L J, FAN Y H, YUAN J. Application of magnetically suspended gimbaling flywheel in satellite attitude maneuver[J]. Journal of Mechanical Engineering, 2015, 51(16): 206-212 (in Chinese).
[21] 《中国航空材料手册》编委会. 中国航空材料手册[M]. 2版. 北京: 中国标准出版社, 2002: 176, 187. China Aeronautical Materials Handbook Editorial Board. China aeronautical materials handbook[M]. 2nd ed. Beijing: China Standard Press, 2002: 176, 187 (in Chinese).
/
〈 | 〉 |