实验研究

风洞虚拟飞行模型机与原型机动力学特性分析

  • 郭林亮 ,
  • 祝明红 ,
  • 孔鹏 ,
  • 聂博文 ,
  • 钟诚文
展开
  • 1. 西北工业大学 航空学院, 西安 710072;
    2. 中国空气动力研究与发展中心, 绵阳 621000
郭林亮,男,博士研究生,助理研究员。主要研究方向:实验空气动力学,飞行动力学与控制。Tel:0816-2464702。E-mail:guolinliangliang@163.com;祝明红,男,研究员。主要研究方向:大迎角空气动力学和尾旋。Tel:0816-2461016。E-mail:1400504410@qq.com;孔鹏,男,助理研究员。主要研究方向:机械设计和机电一体化。E-mail:kp00139@sohu.com;聂博文,男,助理研究员。主要研究方向:测控技术。E-mail:xuanwen1981@163.com;钟诚文,男,博士,教授,博士生导师。主要研究方向:计算流体力学。Tel:029-88460412。E-mail:zhongcw@nwpu.edu.cn

收稿日期: 2015-09-24

  修回日期: 2015-11-02

  网络出版日期: 2015-11-24

基金资助

国家“973”计划(2015CB755800)

Analysis of dynamic characteristics between prototype aircraft and scaled-model of virtual flight test in wind tunnel

  • GUO Linliang ,
  • ZHU Minghong ,
  • KONG Peng ,
  • NIE Bowen ,
  • ZHONG Chengwen
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2015-09-24

  Revised date: 2015-11-02

  Online published: 2015-11-24

Supported by

National Basic Research Program of China (2015CB755800)

摘要

在低速风洞虚拟飞行试验系统中,采用三自由度(3-DOF)球铰支撑动力学相似缩比飞机模型,在气动力矩作用下试验模型可绕质心自由转动。这种带约束的运动与具有六自由度(6-DOF)的真实大气飞行存在差别,鉴于此,对各影响因素逐个剖离并进行了数值模拟和对比分析。结果表明:位移约束使两者间的动力学特性产生较明显的差异,缩比的影响符合相似准则规律,机构摩擦、模型重心与支撑点不重合影响较小,常值干扰力矩对模型的初始响应有一定影响。对比分析结果可以用于指导风洞虚拟飞行试验的开展,并有助于完善风洞虚拟飞行试验技术及其拓展应用。

本文引用格式

郭林亮 , 祝明红 , 孔鹏 , 聂博文 , 钟诚文 . 风洞虚拟飞行模型机与原型机动力学特性分析[J]. 航空学报, 2016 , 37(8) : 2583 -2593 . DOI: 10.7527/S1000-6893.2015.0296

Abstract

This paper presents a virtual flight testing system in low speed wind tunnel, which has a 3-degree-of-freedom (3-DOF) gimbal mechanism to connect a dynamically-scaled wind tunnel model supported by a vertical strut. The model can freely rotate around the center of gravity due to the aerodynamic moments. Obviously the constrained motion is different from the real 6-DOF free flight in the air. So the influencing factors which contribute to the dynamic characteristics' differences between the prototype aircraft and scaled-model are individually compared and investigated through flight dynamics simulation. The results demonstrate that the constrained translational movement has a significant impact on the dynamic characteristics while the dynamic response of the scaled-model and full-scale aircraft meets the similarity law; both the 3-DOF bearing friction and the non-coincidence between center of gravity and center of gimbal has small influence; the constant moment disturbance has some impact on the initial response. The comparison and analysis can provide a guide for the virtual flight test in wind tunnel, and are also helpful for the improvement and application of the wind tunnel testing technique.

参考文献

[1] RATLIFF C L, MARQUART E J. An assessment of a potential test technique:AIAA-1995-3415[R]. Reston:AIAA, 1995.
[2] RATLIFF C L, MARQUART E J. Bridging the gap between ground and flight tests:Virtual flight testing (VFT):AIAA-1995-3875[R]. Reston:AIAA, 1995.
[3] MAGILL J C, WEHE S D. Initial test of a wire suspension mount for missile virtual flight testing:AIAA-2002-0169[R]. Reston:AIAA, 2002.
[4] LAWRENCE F C, MILLS B H. Status update of the AEDC virtual flight testing development program:AIAA-2002-0168[R]. Reston:AIAA, 2002.
[5] MAGILL J C, CATALDI P, MORENCY J R, et al. Demonstration of a wire suspension for wind-tunnel virtual flight testing[J]. Journal of Spacecraft and Rockets, 2009, 46(3):624-633.
[6] LOWENBERG M H, KYLE H L. Development of a pendulum support rig dynamic wind tunnel apparatus:AIAA 2002-4879[R]. Reston:AIAA, 2002.
[7] DAVISON P M, LOWENBERG M H. Experimental analysis and modeling of limit cycles in a dynamic wind tunnel rig[J]. Journal of Aircraft, 2003, 40(4):776-785.
[8] DAVISON P M, LOWENBERG M H. Modeling nonlinear behaviour in a single degree-of-freedom dynamic wind tunnel rig:AIAA-2003-5314[R]. Reston:AIAA, 2003.
[9] RICHARDSON T S, DUBS A, LOWENBERG M H, et al. Wind-tunnel testing of a dynamic state-feedback gain scheduled control system:AIAA-2005-5976[R]. Reston:AIAA, 2005.
[10] GATTO A, LOWENBERG M H. Evaluation of a three-degree-of-freedom test rig for stability derivative estimation[J]. Journal of Aircraft, 2006, 43(6):1747-1762.
[11] GATTO A. Application of a pendulum support test rig for aircraft stability derivative estimation[J]. Journal of Aircraft, 2006, 46(3):927-934.
[12] PATTINSON J, LOWENBERG M H, GOMAN M G. A multi-degree-of-freedom rig for the wind tunnel determination of dynamic data:AIAA-2009-5727[R]. Reston:AIAA, 2009.
[13] PATTINSON J, LOWENBERG M H, GOMAN M G. Multi-degree-of-freedom wind-tunnel maneuver rig for dynamic simulation and aerodynamic model identification[J]. Journal of Aircraft, 2013, 50(2):551-566.
[14] ARAUJO-ESTRADA S A, LOWENBERG M H, NEILD S, et al. Evaluation of aircraft model upset behaviour using wind tunnel manoeuvre rig:AIAA-2015-0750[R]. Reston:AIAA, 2015.
[15] SEN A, BHANGE N P, WAHI P, et al. 5-degree-of-freedom dynamic rig for wind tunnel tests of aerospace vehicles:AIAA-2009-5605[R]. Reston:AIAA, 2009.
[16] PEYADAL N K, GHOSH A K, GO T H. Mathematical modelling, simulation, and estimation of aircraft parameters using five degree-of-freedom dynamic test rig[J].Angewandte Chemie Internation Edition, 2007, 46(17):3126-3130.
[17] SOHI N P. Modeling of spin modes of supersonic aircraft in horizontal wind tunnel[C]//24th International Congress of the Aeronautical Sciences. Yokohama, Japan:ICAS, 2004.
[18] GRISHIN I, KHRABROV A, KOLINKO A, et al. Wind tunnel investigation of critical flight regimes using dynamically scaled actively controlled model in 3 DOF gimbal[C]//29th Congress of the International Council of the Aeronautical Sciences. St. Petersburg, Russia:ICAS, 2014.
[19] STRUB G, THEODOULISY S, GASSMAN V, et al. Pitch axis control for a guided projectile in a wind tunnel-based hardware-in-the-loop setup:AIAA-2015-0153[R]. Reston:AIAA, 2015.
[20] STENFELT G, RINGERTZ U. Yaw control of a tailless aircraft configuration[J]. Journal of Aircraft, 2010, 47(5):1807-1810.
[21] 李浩.风洞虚拟飞行试验相似准则和模拟方法研究[D]. 绵阳:中国空气动力研究与发展中心, 2012. LI H. Study on the similarity criteria and simulation method of the wind tunnel based virtual flight testing[D]. Mianyang:China Aerodynamics Research and Development Center, 2012(in Chinese).
[22] 席柯, 袁武, 阎超, 等. 基于闭环控制的带翼导弹虚拟飞行数值模拟[J]. 航空学报,2014, 35(3):634-642. XI K, YUAN W, YAN C, et al. Virtual flight numerical simulation of the basic finner projectile with closed loop[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):634-642(in Chinese).
[23] 赵忠良, 吴军强, 李浩, 等.2.4 m跨声速风洞虚拟飞行试验技术初步研究[J].航空学报,2016, 37(2):504-512. ZHAO Z L, WU J Q, LI H, et al. Investigation of virtual flight testing technique based on 2.4 m transonic wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2):504-512(in Chinese).
[24] 胡静, 李潜. 风洞虚拟飞行试验技术初步研究[J]. 实验流体力学,2010, 24(1):95-99. HU J, LI Q. Primary investigation of the virtual flight testing techniques in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1):95-99(in Chinese).
[25] 吕光男. 风洞虚拟飞行试验中的飞行力学与控制问题研究[D]. 南京:南京航空航天大学, 2009. LV G N. Research on a flight dynamics and control in wind tunnel based virtual flight test[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2009(in Chinese).
[26] GEBERTL G, KELLY J, LOPEZ J, et al. Wind tunnel based virtual flight testing:AIAA-2000-0829[R]. Reston:AIAA, 2000.
[27] 陈孟钢, 高金源. 缩比模型飞机及其飞控系统与原型机的相似关系[J].飞行力学,2003, 21(2):34-37. CHEN M G, GAO J Y. Similarity relationships between scaled-model aircraft with its flight control system and prototype aircraft[J]. Flight Dynamics, 2003, 21(2):34-37(in Chinese).

文章导航

/