固体力学与飞行器总体设计

考虑冲击缺陷的钛合金板的疲劳寿命预估

  • 詹志新 ,
  • 佟阳 ,
  • 李彬恺 ,
  • 胡伟平 ,
  • 孟庆春
展开
  • 北京航空航天大学 航空科学与工程学院, 北京 100083
詹志新 男,博士研究生。主要研究方向:疲劳与损伤力学,结构件缺陷容限计算。Tel.:010-82317017,E-mail:zzxupc@163.com;

收稿日期: 2015-07-23

  修回日期: 2015-11-03

  网络出版日期: 2015-11-19

基金资助

北京航空航天大学基本科研业务费-博士研究生创新基金

Fatigue life prediction for titanium plate considering impact defect

  • ZHAN Zhixin ,
  • TONG Yang ,
  • LI Binkai ,
  • HU Weiping ,
  • MENG Qingchun
Expand
  • School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China

Received date: 2015-07-23

  Revised date: 2015-11-03

  Online published: 2015-11-19

Supported by

Innovation Foundation of BUAA for Ph.D.Graduates

摘要

基于连续损伤力学理论,研究了含冲击凹坑缺陷的Ti-1023钛合金板的疲劳损伤问题。通过分析冲击损伤与疲劳损伤的共同作用以及应力场与损伤场的耦合作用,对含冲击凹坑的钛合金板的疲劳寿命进行了预估。首先,基于连续介质运动学理论,采用非线性动力学有限元分析软件进行冲击损伤的模拟,得到冲击凹坑处的残余应力场与塑性应变场。其次,根据塑性损伤方程,计算冲击凹坑局部的初始损伤场,并将其作为后续疲劳计算的初始条件。然后,采用Chaudonneret的多轴疲劳损伤力学模型建立损伤力学—有限元数值解法,以进行损伤演化过程的数值计算。最后,综合考虑残余应力场、塑性初始损伤和疲劳损伤的共同作用,对含冲击凹坑的钛合金板进行了疲劳寿命预估,并进行了相应的疲劳验证试验。结果表明,预估结果与试验结果相一致。所做研究为工程中采用损伤力学方法来预估含冲击损伤的结构的疲劳寿命提供了一种可行的方法。

本文引用格式

詹志新 , 佟阳 , 李彬恺 , 胡伟平 , 孟庆春 . 考虑冲击缺陷的钛合金板的疲劳寿命预估[J]. 航空学报, 2016 , 37(7) : 2200 -2207 . DOI: 10.7527/S1000-6893.2015.0298

Abstract

Based on the theory of continuum damage mechanics, fatigue life prediction for Ti-1023 titanium plate with impact pit is studied. By analyzing the combined effect of impact damage and fatigue damage, considering the coupling effect of stress field and damage field, the fatigue life of titanium plate with impact pit is predicted. Firstly, on the basis of the continuum kinematics theory, the nonlinear dynamic finite element analysis software is used to simulate the process of impact damage, and the residual stress field and plastic strain field around impact pit are also obtained. Secondly, the initial damage field is calculated according to the plastic damage model, which will be input as the initial conditions of the subsequent fatigue calculation. Then, the multiaxial fatigue damage model of Chaudonneret is adopted and the damage mechanics-finite element numerical method is proposed to conduct the damage evolution calculation. Finally, this method is used to predict the fatigue life of titanium plate with impact pit and the corresponding fatigue tests are conducted for validation. The results show that the prediction lives are in accordance with test data. The research provides a feasible method for fatigue life prediction of metal component with impacted damage in engineering practice.

参考文献

[1] SURESH S. Fatigue of materials[M]. Cambridge:Cambridge University Press, 1998:1-10.
[2] 姚卫星. 结构疲劳寿命分析[M]. 北京:国防工业出版社, 2003:20-25. YAO W X. Fatigue life prediction of structures[M]. Beijing:National Defense Industry Press, 2003:20-25(in Chinese).
[3] FATEMI A, YANG L. Cumulative fatigue damage and life prediction theories:A survey of the state of the art for homogeneous materials[J]. International Journal of Fatigue, 1998, 20(1):9-34.
[4] CHABOCHE J, LESNE P. A nonlinear continuous fatigue damage model[J]. Fatigue & Fracture of Engineering Materials & Structures, 1988, 11(1):1-17.
[5] MARTIN B. A theory of fatigue damage accumulation and repair in cortical bone[J]. Journal of Orthopaedic Research, 1992, 10(6):818-825.
[6] CHABOCHE J L. Continuous damage mechanics-A tool to describe phenomena before crack initiation[J]. Nuclear Engineering and Design, 1981, 64(2):233-247.
[7] LEMAITRE J. A course on damage mechanics[M]. Berlin:Springer-Verlag, 1992:1-20.
[8] 郑战光, 蔡敢为, 李兆军. 一种新的疲劳损伤演化模型[J]. 工程力学, 2010, 27(2):37-40. ZHENG Z G, CAI G W, LI Z J. A new model of fatigue damage evolution[J]. Engineering Mechanics, 2010, 27(2):37-40(in Chinese).
[9] LEMAITRE J, DESMORAT R. Engineering damage mechanics:Ductile, creep, fatigue and brittle failures[M]. Berlin:Springer-Verlag, 2005:53-59.
[10] NIKITIN I, ALTENBERGER I. Comparison of the fatigue behavior and residual stress stability of laser-shock peened and deep rolled austenitic stainless steel AISI 304 in the temperature range 25-600℃[J]. Materials Science and Engineering:A, 2007, 465(1-2):176-182.
[11] LI P, MAIJER D M, LINDLEY T C, et al. A through process model of the impact of in-service loading, residual stress, and microstructure on the final fatigue life of an A356 automotive wheel[J]. Materials Science and Engineering:A, 2007, 460(1):20-30.
[12] BELLETT D, TAYLOR D, MARCO S, et al. The fatigue behaviour of three-dimensional stress concentrations[J]. International Journal of Fatigue, 2005, 27(3):207-221.
[13] TIMOSHENKO S P, GERE J M. Theory of elastic stability[M]. New York:Courier Dover Publications, 2009:1-15.
[14] DHATT G, LEFRANCOIS E, TOUZOT G. Finite element method[M]. Cambridge:John Wiley & Sons, 2012:1-10.
[15] LEMAITRE J. Mechanics of solid materials[M]. Cambridge:Cambridge University Press, 1994:121-345.
[16] CHAUDONNERET M. A simple and efficient multiaxial fatigue damage model for engineering applications of macro-crack initiation[J]. Journal of Engineering Materials and Technology, 1993, 115(4):373-379.
[17] 吴学仁. 飞机结构金属材料力学性能手册:静强度疲劳/耐久性[M]. 北京:航空工业出版社, 1996:486-487. WU X R. Handbook of mechanical properties of aircraft structural metals[M]. Beijing:Aviation Industry Press, 1998:486-487(in Chinese).
[18] ZHAN Z X, HU W P, ZHANG M, et al. The fatigue life prediction for structure with surface scratch considering cutting residual stress, initial plasticity damage and fatigue damage[J]. International Journal of Fatigue, 2015, 74:173-182.
[19] ZHANG T, MCHUGH P, LEEN S. Finite element implementation of multiaxial continuum damage mechanics for plain and fretting fatigue[J]. International Journal of Fatigue, 2012, 44(2):260-272.

文章导航

/