方案设计与多学科分析

翼身融合布局飞机总体参数对气动性能的影响

  • 蒋瑾 ,
  • 钟伯文 ,
  • 符松
展开
  • 1. 中国商飞北京民用飞机技术研究中心总体论证研究部, 北京 102211;
    2. 清华大学航天航空学院, 北京 100084
蒋瑾 男,博士。主要研究方向:计算空气动力学。Tel:010-57808780,E-mail:smartdingo@163.com;钟伯文 男,博士,研究员。主要研究方向:飞机总体设计,计算空气动力学。Tel:010-57808802,E-mail:zhongbowen@comac.cc

收稿日期: 2015-10-21

  修回日期: 2015-11-04

  网络出版日期: 2015-11-19

Influence of overall configuration parameters on aerodynamic characteristics of a blended-wing-body aircraft

  • JIANG Jin ,
  • ZHONG Bowen ,
  • FU Song
Expand
  • 1. Department of Aircraft Configuration Studies, Beijing Aeronautical Science & Technology Research Institute of COMAC, Beijing 102211, China;
    2. School of Aerospace Engineering, Tsinghua University, Beijing 100084, China

Received date: 2015-10-21

  Revised date: 2015-11-04

  Online published: 2015-11-19

摘要

翼身融合布局是一种极具潜力和竞争力的新布局型式,该种布局型式飞机的总体参数对其自身的气动性能有重要影响,有必要开展相关的影响规律研究。本文基于某一翼身融合布局飞机概念方案,采用快速数值方法模拟了不同气动外形的高速流动,分析了总体参数(主要包括机翼面积、展弦比和外翼前缘后掠角)等对飞机高速气动性能的影响。结果表明,可以通过改变展弦比和机翼面积显著地改善气动性能,但未发现外翼前缘后掠角的改变与气动性能的改善有明显的关联。

本文引用格式

蒋瑾 , 钟伯文 , 符松 . 翼身融合布局飞机总体参数对气动性能的影响[J]. 航空学报, 2016 , 37(1) : 278 -289 . DOI: 10.7527/S1000-6893.2015.0301

Abstract

As an potential and competent contender,overall configuration parameters of Blend-Wing-Body(BWB)aircraft play an important role in its aerodynamic characteristics.So it is necessary to reveal the trends of the influence of overall parameters on its performance.In this paper,the influence of some aerodynamic configuration parameters,including trapezoidal wing area,aspect ratio,sweep angle of outer-wing leading edge,on the high-speed aerodynamic characteristics of a conceptual BWB civil aircraft was analyzed using fast numerical simulation method.Results show that aspect ratio and trapezoidal wing area are of particular significance in the improvement of aerodynamic performance while variation on sweep of out-wing leading edge leads to slight performance change and does not identify a clear changing relationship.

参考文献

[1] FOLLEN G J,ROSARIO R D,WAHLS R,et al.NASA's fundamental aeronautics subsonic fixed wing project:generation n+3 technology portfolio:SAE Technical Paper 2011-01-2521[R].Warrendale:SAE,2011.
[2] GREITZER E M,BONNEFOY P A,BLANCO E D R,et al.N+3 aircraft concept designs and trade studies,final report:Volume 1:NASA/CR-2010-216794[R].Washington,D.C.:NASA,2010.
[3] POTSDAM M A,PAGE M A,LIEBECK R H.Blended wing body analysis and design:AIAA-97-2317[R].Reston:AIAA,1997.
[4] BOLSUNOVSKY A L,BUZOVERYA N P,GUREVICH B I,et al.Flying wing-problems and decisions[J].Aircraft Design,2001,4(4):193-219.
[5] QIN N,VAVALLE A,LE MOIGNE A,et al.Aerodynamic studies for blended wing body aircraft:AIAA 2002-5448[R].Reston:AIAA,2002.
[6] QIN N,VAVALLE A,LE MOIGNE A,et al.Aerodynamic considerations of blended wing body aircraft[J].Progress in Aerospace Sciences,2004,40(6):321-343.
[7] PEIGIN S,EPSTEIN B.Computational fluid dynamics driven optimization of blended wing body aircraft[J].AIAA Journal,2006,44(11):2736-2745.
[8] FROTA J,NICHOLLS K,WHURR J,et al.Final activity report 2005-2010[R].EU:New Aircraft Concepts Research,2010.
[9] VOS R,GEUSKENS F J J M M,HOOGREEF M F M.A new structural design concept for blended wing body cabins:AIAA-2012-1998[R].Reston:AIAA,2012.
[10] GRANZEIER W.New cabin design concept for blended wing body aircraft:AIAA-2002-5888[R].Reston:AIAA,2002.
[11] MUKHOPADHYAY V,SOBIESZCZANSKI-SOBIESKI J,KOSAKA I,et al.Analysis design and optimization of non-cylindrical fuselage for blended-wing-body(BWB) vehicle:AIAA-2002-5664[R].Reston:AIAA,2002.
[12] MUKHOPADHYAY V.Blended-Wing-Body(BWB) fuselage structural design for weight reduction:AIAA-2005-2349[R].Reston:AIAA,2005.
[13] RODRIGUEZ D L.A multidisciplinary optimization method for designing boundary layer ingestion inlets[D].Caligornia:Standford University,2001:157-194.
[14] DAGGETT D L,KAWAI R,FRIEDMAN D.Blended wing body systems studies:Boundary layer ingestion inlets with active flow control:NASA/CR-2003-212670[R].Washington,D.C.:NASA,2003.
[15] KO Y Y A.The multidisciplinary design optimization of a distributed propulsion blended-wing-body aircraft[D].Virginia:Virginia Polytechnic Institute and State University,2003:14-23.
[16] KAWAI R T,FRIEDMAN D M,SERRANO L.Blended wing body(BWB) boundary layer ingestion(BLI) inlet configuration and system studies:NACA/CR-2006-214534[R].Washington,D.C.:NASA,2006.
[17] PLAS A P,SARGEANT M A,MADANI V,et al.Performance of a boundary layer ingesting(BLI) propulsion system:AIAA-2007-0450[R].Reston:AIAA,2007.
[18] PITERA D M,DEHAAN M,BROWN D,et al.Blended wing body concept development with open rotor engine integration:NASA/CR-2011-217303[R].Washington,D.C.:NASA,2011.
[19] FERRAR A M,O'BRIEN W F.Progress in boundary layer ingesting embedded engine research:AIAA-2012-4283[R].Reston:AIAA,2012.
[20] WAN T,SONG B C.Aerodynamic performance study of a modern blended-wing-body aircraft under severe weather situations:AIAA-2012-1037[R].Reston:AIAA,2012.
[21] CARTER M B,VICROY D D,PATEL D.Blended-Wing-Body transonic aerodynamics:Summary of ground tests and sample results:AIAA-2009-0935[R].Reston:AIAA,2009.
[22] VICROY D D.Blended-Wing-Body low-speed flight dynamics:summary of ground tests and sample results:N20090007690[R].Reston:AIAA,2009.
[23] WAKAYAMA S.Multidisciplinary design optimization of the blended-wing-body:AIAA-1998-4938[R].Reston:AIAA,1998.
[24] SAEPHAN S.Determination of tailless aircraft tumbling and stability characteristics through computational fluid dynamics[D].California:University of California,Davis,2006:73-80.
[25] PEIGIN S,EPSTEIN B.CFD driven optimization of blended wing body aircraft:AIAA-2006-3457[R].Reston:AIAA,2006.
[26] LEIFSSON L T,MASON W H,SCHETZ J A,et al.Multidisciplinary design optimization of low-airframe-noise transport aircraft:AIAA-2006-0230[R].Reston:AIAA,2006.
[27] STAELENS Y D,BLACKWELDER R F,PAGE M A.Study of belly-flaps to enhance lift-and pitching moment coefficient of a BWB-airplane:AIAA-2007-4176[R].Reston:AIAA,2007.
[28] KUNTAWALA N B,HICKEN J E,ZINGG D W.Preliminary aerodynamic shape optimization of a blended-wing-body aircraft configuration:AIAA-2011-0642[R].Reston:AIAA,2011.
[29] ROYSDON P F,KHALID M.Blended-Wing-Body lateral-directional stability investigation using 6DOF simulation:AIAA-2011-1563[R].Reston:AIAA,2011.
[30] LYU Z.Aerodynamic shape optimization of a blended-wing-body aircraft:AIAA-2013-0283[R].Reston:AIAA,2013.
[31] WILDSCHEK A.Flight dynamics and control related challenges for design of a commercial blended wing body aircraft:AIAA-2014-0599[R].Reston:AIAA,2014.
[32] SIOURIS S,QIN N.Study of the effects of wing sweep on the aerodynamic performance of a blended wing body aircraft[J].Proceedings of the Institution of Mechanical Engineers Part G:Journal of Aerospace Engineering,2007,221(1):47-55.
[33] 蒋瑾.翼身融合布局飞机总体参数影响规律研究[R].北京:中国商飞北研中心与清华大学联合招收博士后研究报告,2015:14-16,43-52,78-90.JIANG J.Impact of aerodynamic configuration parameters on the aerodynamic performance of a blended-wing-body civil aircraft[R].Beijing:BASTRI & Tsinghua University,2015:14-16,43-52,78-90(in Chinese).
[34] LIEBECK R H.Blended wing body design challenges:AIAA-2003-2659[R].Reston:AIAA,2003.
[35] ANALYTICAL METHODS,INC.MGAERO:A Cartesian multigrid Euler code for flow around arbitrary configurations user's manual version 3.5[M].2010.
[36] ROE P L.Approximate Riemann solvers,parameter vectors,and difference schemes[J].Journal of Computational Physics,1981,43(2):357-372.
[37] YOON S,JAMESON A.A multigrid LU-SSOR scheme for approximate Newton iteration applied to the Euler equations:NASA-CR-179524[R].California:NASA,1986.
[38] MENTER F R.Two-equation eddy-viscosity turbulence models for engineering applications[J].AIAA Journal,1994,32(8):1598-1605.
[39] 杨爱明,翁培奋,乔志德.用多重网格方法计算旋翼跨声速无粘流场[J].空气动力学学报,2004,22(3):313-318.YANG A M,WENG P F,QIAO Z D.Euler solutions of transonic flow for a helicopter rotor in hover using multigrid method[J].Acta Aerodynamica Sinica,2004,22(3):313-318(in Chinese).
[40] REDEKER G.DLR-F4 wing body configuration:AGARD AR-303[R].Neuilly sur Seine:AGARD,1994.
[41] BRODERSEN O.Drag prediction of engine-airframe interference effects using unstructured Navier-Stokes calculations[J].Journal of Aircraft,2002,39(6):927-935.
[42] 2nd AIAA CFD drag prediction workshop website[EB/OL].(2003-06-21) [2015-09-20].http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/Work-shop2/workshop2.html.
[43] BELTRAMO M N,TRAPP D L,KIMOTOB W,et al.Parametric study of transport aircraft systems cost and weight:NASA CR151970[R].California:NASA,1977.

文章导航

/