翼身融合布局飞机总体参数对气动性能的影响
收稿日期: 2015-10-21
修回日期: 2015-11-04
网络出版日期: 2015-11-19
Influence of overall configuration parameters on aerodynamic characteristics of a blended-wing-body aircraft
Received date: 2015-10-21
Revised date: 2015-11-04
Online published: 2015-11-19
蒋瑾 , 钟伯文 , 符松 . 翼身融合布局飞机总体参数对气动性能的影响[J]. 航空学报, 2016 , 37(1) : 278 -289 . DOI: 10.7527/S1000-6893.2015.0301
As an potential and competent contender,overall configuration parameters of Blend-Wing-Body(BWB)aircraft play an important role in its aerodynamic characteristics.So it is necessary to reveal the trends of the influence of overall parameters on its performance.In this paper,the influence of some aerodynamic configuration parameters,including trapezoidal wing area,aspect ratio,sweep angle of outer-wing leading edge,on the high-speed aerodynamic characteristics of a conceptual BWB civil aircraft was analyzed using fast numerical simulation method.Results show that aspect ratio and trapezoidal wing area are of particular significance in the improvement of aerodynamic performance while variation on sweep of out-wing leading edge leads to slight performance change and does not identify a clear changing relationship.
[1] FOLLEN G J,ROSARIO R D,WAHLS R,et al.NASA's fundamental aeronautics subsonic fixed wing project:generation n+3 technology portfolio:SAE Technical Paper 2011-01-2521[R].Warrendale:SAE,2011.
[2] GREITZER E M,BONNEFOY P A,BLANCO E D R,et al.N+3 aircraft concept designs and trade studies,final report:Volume 1:NASA/CR-2010-216794[R].Washington,D.C.:NASA,2010.
[3] POTSDAM M A,PAGE M A,LIEBECK R H.Blended wing body analysis and design:AIAA-97-2317[R].Reston:AIAA,1997.
[4] BOLSUNOVSKY A L,BUZOVERYA N P,GUREVICH B I,et al.Flying wing-problems and decisions[J].Aircraft Design,2001,4(4):193-219.
[5] QIN N,VAVALLE A,LE MOIGNE A,et al.Aerodynamic studies for blended wing body aircraft:AIAA 2002-5448[R].Reston:AIAA,2002.
[6] QIN N,VAVALLE A,LE MOIGNE A,et al.Aerodynamic considerations of blended wing body aircraft[J].Progress in Aerospace Sciences,2004,40(6):321-343.
[7] PEIGIN S,EPSTEIN B.Computational fluid dynamics driven optimization of blended wing body aircraft[J].AIAA Journal,2006,44(11):2736-2745.
[8] FROTA J,NICHOLLS K,WHURR J,et al.Final activity report 2005-2010[R].EU:New Aircraft Concepts Research,2010.
[9] VOS R,GEUSKENS F J J M M,HOOGREEF M F M.A new structural design concept for blended wing body cabins:AIAA-2012-1998[R].Reston:AIAA,2012.
[10] GRANZEIER W.New cabin design concept for blended wing body aircraft:AIAA-2002-5888[R].Reston:AIAA,2002.
[11] MUKHOPADHYAY V,SOBIESZCZANSKI-SOBIESKI J,KOSAKA I,et al.Analysis design and optimization of non-cylindrical fuselage for blended-wing-body(BWB) vehicle:AIAA-2002-5664[R].Reston:AIAA,2002.
[12] MUKHOPADHYAY V.Blended-Wing-Body(BWB) fuselage structural design for weight reduction:AIAA-2005-2349[R].Reston:AIAA,2005.
[13] RODRIGUEZ D L.A multidisciplinary optimization method for designing boundary layer ingestion inlets[D].Caligornia:Standford University,2001:157-194.
[14] DAGGETT D L,KAWAI R,FRIEDMAN D.Blended wing body systems studies:Boundary layer ingestion inlets with active flow control:NASA/CR-2003-212670[R].Washington,D.C.:NASA,2003.
[15] KO Y Y A.The multidisciplinary design optimization of a distributed propulsion blended-wing-body aircraft[D].Virginia:Virginia Polytechnic Institute and State University,2003:14-23.
[16] KAWAI R T,FRIEDMAN D M,SERRANO L.Blended wing body(BWB) boundary layer ingestion(BLI) inlet configuration and system studies:NACA/CR-2006-214534[R].Washington,D.C.:NASA,2006.
[17] PLAS A P,SARGEANT M A,MADANI V,et al.Performance of a boundary layer ingesting(BLI) propulsion system:AIAA-2007-0450[R].Reston:AIAA,2007.
[18] PITERA D M,DEHAAN M,BROWN D,et al.Blended wing body concept development with open rotor engine integration:NASA/CR-2011-217303[R].Washington,D.C.:NASA,2011.
[19] FERRAR A M,O'BRIEN W F.Progress in boundary layer ingesting embedded engine research:AIAA-2012-4283[R].Reston:AIAA,2012.
[20] WAN T,SONG B C.Aerodynamic performance study of a modern blended-wing-body aircraft under severe weather situations:AIAA-2012-1037[R].Reston:AIAA,2012.
[21] CARTER M B,VICROY D D,PATEL D.Blended-Wing-Body transonic aerodynamics:Summary of ground tests and sample results:AIAA-2009-0935[R].Reston:AIAA,2009.
[22] VICROY D D.Blended-Wing-Body low-speed flight dynamics:summary of ground tests and sample results:N20090007690[R].Reston:AIAA,2009.
[23] WAKAYAMA S.Multidisciplinary design optimization of the blended-wing-body:AIAA-1998-4938[R].Reston:AIAA,1998.
[24] SAEPHAN S.Determination of tailless aircraft tumbling and stability characteristics through computational fluid dynamics[D].California:University of California,Davis,2006:73-80.
[25] PEIGIN S,EPSTEIN B.CFD driven optimization of blended wing body aircraft:AIAA-2006-3457[R].Reston:AIAA,2006.
[26] LEIFSSON L T,MASON W H,SCHETZ J A,et al.Multidisciplinary design optimization of low-airframe-noise transport aircraft:AIAA-2006-0230[R].Reston:AIAA,2006.
[27] STAELENS Y D,BLACKWELDER R F,PAGE M A.Study of belly-flaps to enhance lift-and pitching moment coefficient of a BWB-airplane:AIAA-2007-4176[R].Reston:AIAA,2007.
[28] KUNTAWALA N B,HICKEN J E,ZINGG D W.Preliminary aerodynamic shape optimization of a blended-wing-body aircraft configuration:AIAA-2011-0642[R].Reston:AIAA,2011.
[29] ROYSDON P F,KHALID M.Blended-Wing-Body lateral-directional stability investigation using 6DOF simulation:AIAA-2011-1563[R].Reston:AIAA,2011.
[30] LYU Z.Aerodynamic shape optimization of a blended-wing-body aircraft:AIAA-2013-0283[R].Reston:AIAA,2013.
[31] WILDSCHEK A.Flight dynamics and control related challenges for design of a commercial blended wing body aircraft:AIAA-2014-0599[R].Reston:AIAA,2014.
[32] SIOURIS S,QIN N.Study of the effects of wing sweep on the aerodynamic performance of a blended wing body aircraft[J].Proceedings of the Institution of Mechanical Engineers Part G:Journal of Aerospace Engineering,2007,221(1):47-55.
[33] 蒋瑾.翼身融合布局飞机总体参数影响规律研究[R].北京:中国商飞北研中心与清华大学联合招收博士后研究报告,2015:14-16,43-52,78-90.JIANG J.Impact of aerodynamic configuration parameters on the aerodynamic performance of a blended-wing-body civil aircraft[R].Beijing:BASTRI & Tsinghua University,2015:14-16,43-52,78-90(in Chinese).
[34] LIEBECK R H.Blended wing body design challenges:AIAA-2003-2659[R].Reston:AIAA,2003.
[35] ANALYTICAL METHODS,INC.MGAERO:A Cartesian multigrid Euler code for flow around arbitrary configurations user's manual version 3.5[M].2010.
[36] ROE P L.Approximate Riemann solvers,parameter vectors,and difference schemes[J].Journal of Computational Physics,1981,43(2):357-372.
[37] YOON S,JAMESON A.A multigrid LU-SSOR scheme for approximate Newton iteration applied to the Euler equations:NASA-CR-179524[R].California:NASA,1986.
[38] MENTER F R.Two-equation eddy-viscosity turbulence models for engineering applications[J].AIAA Journal,1994,32(8):1598-1605.
[39] 杨爱明,翁培奋,乔志德.用多重网格方法计算旋翼跨声速无粘流场[J].空气动力学学报,2004,22(3):313-318.YANG A M,WENG P F,QIAO Z D.Euler solutions of transonic flow for a helicopter rotor in hover using multigrid method[J].Acta Aerodynamica Sinica,2004,22(3):313-318(in Chinese).
[40] REDEKER G.DLR-F4 wing body configuration:AGARD AR-303[R].Neuilly sur Seine:AGARD,1994.
[41] BRODERSEN O.Drag prediction of engine-airframe interference effects using unstructured Navier-Stokes calculations[J].Journal of Aircraft,2002,39(6):927-935.
[42] 2nd AIAA CFD drag prediction workshop website[EB/OL].(2003-06-21) [2015-09-20].http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/Work-shop2/workshop2.html.
[43] BELTRAMO M N,TRAPP D L,KIMOTOB W,et al.Parametric study of transport aircraft systems cost and weight:NASA CR151970[R].California:NASA,1977.
/
〈 | 〉 |