环量控制技术研究
收稿日期: 2015-10-14
修回日期: 2015-11-10
网络出版日期: 2015-11-13
Study of the circulation control technology
Received date: 2015-10-14
Revised date: 2015-11-10
Online published: 2015-11-13
未来军/民运输机的高性能要求促使近年来环量控制技术正成为研究的新热点。本文简单介绍了环量控制研究的进展;深入讨论了包括二维环量控制翼型标模和CCA/OTW(Circulation Control Airfoil/Over the Wing)实验、半模型子系统实验和三维翼身融合体全机实验等可供CFD验证用的NASA实验研究。在2个尺寸相近的风洞中对同一二维标模的实验结果表明,源于切向吹气的最大升力系数CLmax在中等缝道出口高度时可达8~9。数据对比表明此实验结果可供计算流体力学(CFD)验证用。二维CCA/OTW实验表明,发动机位置前移可大幅增大失速迎角和CLmax;CCA后缘吹气噪声的低频部分强度与速度的8次方成正比,高频部分与速度的6次方成正比。半模型子系统的FACT-MAC跨声速实验不仅可研究高雷诺数效应,且可提供2种飞行状态的数据。初步结果表明,与无射流的低速数据相比,在α=25°时CL增大约33%,跨声速时在非设计状态下射流可有效地使激波诱导的分离再附,在保持原有强度下激波位置可后推5%的弦长。三维全机CCW/OTW的实验数据尚在整理分析中,但初步结果已表明,应用前缘吹气可将失速迎角增大至25°,CLmax增大至6,正确安排OTW位置可增大升力线斜率等。
朱自强 , 吴宗成 . 环量控制技术研究[J]. 航空学报, 2016 , 37(2) : 411 -428 . DOI: 10.7527/S1000-6893.2015.0282
The circulation control technology is being a new reseach highlight recently, due to the high performance needs of the fufure military/commercial transports. The research progress of the circulation control is introduced briefly and the NASA experimental research plan, including 2D CC airfoil benchmark and CCA/OTW(circulation control airfoil/over the wing)experiments, half-model subsystem experiments, and 3D hybrid wing body aircraft experiments, intended for CFD code validation is discussed in detail in the present paper. The experimental data of the same model in two similar sized wind tunnels shows that when the slot exit height is moderate CLmax can be reach 8-9 due to the tangential blowing. Comparison of the 2 tunnels' data indicates that the data can be used for CFD validation. 2D CCA/OTW experiments show that both stall angle of attack and CLmax can be increased largely by the position forward movement of the engine. The lower frequency intensity of the trailing blowing noise is proportional to the velocity's 8th power and the higher frequency's is 6th. Results of the half model subsystem FACT-MAC transonic experiments can be used not only to study the effect of high Reynolds number, but also to provide the results of two flight regimes. The preliminary results indicate that comparing with no blowing the increase of CL is about 33% at α=25° at low speed, and the separation induced by shock wave can be effectively reattached and the shock wave's position is moved aft 5% chord while keeping its strength in off-design condition at transonic speed. Being analysed and compared now, the results of 3D large scale full span CCW/OTW aircraft tests will be presented in the upcoming NASA TM. The published data illustrates that with leading edge blowing the wing stall angle of attack can be greater than 25ånd CLmax can be increased to over 6. And the lift curve slope is increased with the application of OTW.
[1] 张正国. NASA未来先进民用飞机与推进系统[J]. 国际航空, 2010(2):56-59. ZHANG Z G. Advanced civil aircraft and propulsion system design in NASA[J]. International Aviation, 2010(2):56-59(in Chinese).
[2] ZEUNE C H. An overview of the airforce's speed agile concept demonstration program:AIAA-2013-1097[R]. Reston:AIAA, 2013.
[3] NIELSON J N, BIGGERS J C. Recent progress in circulation control aerodynamics:AIAA-1987-0001[R]. Reston:AIAA, 1987.
[4] JONES G S, VIKEN S A, WASHBUR A E, et al. An active flow circulation controlled flap concept for general aviation aircraft applications:AIAA-2002-3157[R]. Reston:AIAA, 2002.
[5] YAROS A F, SEXSTONE M G, HUEBNER L D, et al. Synergistic airframe-propulsion interactions and integration:NASA TM-1998-207644[R], Washington, D.C.:NASA, 1998.
[6] WOOD N, NIELSON J N. Circulation control airfoils past, present, and future:AIAA-1985-0204[R]. Reston:AIAA, 1985.
[7] ENGLAR R J. Circulation control pneumatic aerodynamics:blown force and moment augmentation and modification:past, present and future:AIAA-2000-2541[R]. Reston:AIAA, 2000.
[8] LIU Y, SANLAR L N, ENGLAR R J, et al. Numerical simulations of the steady and unsteady aerodynamic characteristics of a circulation control airfoil:AIAA-2001-0704[R]. Reston:AIAA, 2001.
[9] NIELSON J N. Proceedings of circulation control workshop:NASA CP-2432[R]. Washington, D.C.:NASA, 1986.
[10] ENGLAR R J. Development of the A-6/circulation control wing flight demonstrator configuration:DTNSRDC/ASED-79/01[R]. 1979.
[11] PUGLIESE A J, ENGLAR R J. Flight testing of the circulation control wing:AIAA-1979-1791[R]. Reston:AIAA, 1979.
[12] JONES G S, JOSLIN R D. Proceedings of the 2004 NASA/ONR circulation control workshop:NASA CD-2005-213509[R]. Washington, D.C.:NASA, 2005.
[13] JOSLIN R D, JONES G S(editors). Progress in Astronautics and Aeronautics[M]. Reston:AIAA, 2006.
[14] SHUR M L, STRELETS M K, TRAVIN A K, et al. Turbulence modeling in rotating and curved channels:assessing the Spalart-Shur correction[J]. AIAA Journal, 2000, 38(5):784-792.
[15] SWANSON R C, RUMSEY C L, ANDERS S G. Progress towards computational method for circulation control airfoils:AIAA-2005-0089[R]. Reston:AIAA, 2005.
[16] LEE-RAUSCH E M, VASTSA V N, RUMSEY C L. Computational analysis of dual radius circulation control airfoils:AIAA-2006-3012[R]. Reston:AIAA, 2006.
[17] SLOMSKIl J F, CHANG P A, Arunajatesan S. Large-eddy simulation of a circulation control airfoil:AIAA-2006-3011[R]. Reston:AIAA, 2006.
[18] JONES G S, YAO C, ALLEN B G. Experimental investigation of a 2-D supercritical circulation control airfoil using particle image velocimetry:AIAA-2006-3009[R]. Reston:AIAA, 2006.
[19] JONES G S, LIN J C, ALLEN B G, et al. Overview of CFD validation experiments for circulation control applications at NASA[C]//International Powered Lift Conference. London:Royal Aeronautical Society, 2008:22-24.
[20] MILHOLEN W E, JONES G S, CAGLE C M. NASA high Reynolds number circulation control research-overview of CFD and planned experiments(Invited):AIAA-2010-0344[R]. Reston:AIAA, 2010.
[21] ENGLAR R J, JONES G S, ALLEN B G, et al. 2-D circulation control airfoil benchmark experiments intended for CFD code validation:AIAA-2009-0902[R]. Reston:AIAA, 2009.
[22] SWANSON R C, RUMSEY C L. Numerical issues for circulation calculations:AIAA-2006-3008[R]. Reston:AIAA, 2006.
[23] ENGLAR R J, WILLIAMS R M. Test techniques for high lift two dimensional airfoils with boundary an circulation control for application to rotary wing aircraft[J]. Canadian Aeronautics and Space Journal, 1973, 19(3):93-108.
[24] NOVAK C J, CORNELIUS K C, ROADS R K. Experimental investigations of the circular wall jet on a circulation control airfoil:AIAA-1987-0155[R]. Reston:AIAA, 1987.
[25] ENGLAR R J, BLAYLOCK G M, GAETA R J, et al. Recent experiment development of circulation control airfoils and Pneumatic powered-lift systems:AIAA-2010-345[R]. Reston:AIAA, 2010.
[26] ENGLAR R J, GAETA R J, LEE W J, et al. Development of Pneumatic over the wing powered-lift technology, Part I:aerodynamic/propulsive:AIAA-2009-3942[R]. Reston:AIAA, 2009.
[27] GAETA R J, ENGLAR R J, AVERA M. Development of Pneumatic over the wing powered-lift technology, Part Ⅱ:aeroacoustics:AIAA-2009-3941[R]. Reston:AIAA, 2009.
[28] MARSHALL D, JAMESON T. Overview of recent circulation control modeling activities at Cal. Poly:AIAA-2010-0348[R]. Reston:AIAA, 2010.
[29] GAETA R J, LEE W J, FLICK A. Over the wing, powered lift, engine-airframe integration effects on acoustic shielding:AIAA-2009-0282[R]. Reston:AIAA, 2009.
[30] COLLIUS S W, WESTRA B W, LIN J C, et al. Wind tunnel testing of powered lift, all wing STOL model[J]. Aeronautical Journal, 2009, 113(1140):129-137.
[31] LIN J C, JONES G S, ALLAN B G, et al. Flow field measurement of a hybrid wing body model with blown flaps:AIAA-2008-6718[R]. Reston:AIAA, 2008.
[32] CAMPBELL R L. Efficient viscous design of realistic aircraft configurations(invited):AIAA-1998-2539[R]. Reston:AIAA, 1998.
[33] MILHOLEN W E, JONES G S, CHAND T, et al. High Reynolds number circulation control testing in the National Transonic Facility(invited):AIAA-2012-0103[R]. Reston:AIAA, 2012.
[34] JONES G S, MILHOLEN W E, CHAN D T, et al. Development of the circulation control flow scheme used in the NTF semi-span FAST-MAC model:AIAA-2013-3048[R]. Reston:AIAA, 2013.
[35] MILHOLEN W E, JONES G S, CHAN D T, et al. Enhancements to the FAST-MAC circulation control model and recent high-Reybolds number testing in the National Transonic Facility:AIAA-2013-2794[R]. Reston:AIAA, 2013.
[36] LYNN K C, RHEW R D, ACHESON M J, et al. High-Reybolds number active blowing semi-span force measurement system developments:AIAA-2012-3318[R]. Reston:AIAA, 2012.
[37] LYNN K C, TORO K G, LANDMAN D, et al. Enhancements to the National Transonic Facility high-Reybolds number active blowing semi-span force measurement system:AIAA-2014-0275[R]. Reston:AIAA, 2014.
[38] CHAN D T, MILHOLEN W E, JONES G S, et al. Thrust removal methodology for the FAST-MAC circulation control model tested in the National Transonic Facility:AIAA-2014-2402[R]. Reston:AIAA, 2014.
[39] RICH P, MCKINLEY R J, JONES G S. Circulation control in NASA's vehicle systems:NASA CP 2005-213509[R]. Washington, D.C.:NASA, 2005.
[40] CALLWAY R V, WARDWELL D A, ZUK J. Development of a system engineering process for an ESTOL transport planning activity:AIAA-2003-6856[R]. Reston:AIAA, 2003.
[41] BLESSING B H, PHAM J, MARSHALL D D.Using CFD as a design tool on new innovaiive airliner configuration:AIAA-2009-0045[R]. Reston:AIAA, 2009.
[42] 朱自强, 吴宗成, 陈迎春, 等. 民机空气动力设计先进技术[M]. 上海:上海交通大学出版社, 2013. ZHU Z Q, WU Z C, CHEN Y C, et al. Advanced technology of aerodynamic design for commercial aircraft[M]. Shanghai:Shanghai Jiao Tong University Press, 2013(in Chinese).
[43] WETZEL D, GRIFFIN J, LIU F, et al. An experimental study of a circulation airfoil trailing edge flow field:AIAA-2010-4756[R]. Reston:AIAA, 2010.
[44] JAMESON K K, MARSHALL D D, GOLDEN R, et al. Part 1:The wind tunnel model design and Fabrication of Cal Poly's AMELIA 10 foot span hybrid wing body low noise CESTOL aircraft:AIAA-2011-1306[R]. Reston:AIAA, 2011.
[45] JAMESON K K, MARSHALL D D, EHRMANN R, et al. Part 2:Preparation for wind tunnel model testing and verification of Cal Poly's AMELIA 10 foot span hybrid wing body low noise CESTOL aircraft:AIAA-2011-1307[R]. Reston:AIAA, 2011.
[46] JAMESON K K, MARSHALL D D, EHRMANN R, et al. Cal Poly's AMELIA 10 foot span hybrid wing body low noise CESTOL aircraft wing tunnel test and experimental results overview:AIAA-2013-0974[R]. Reston:AIAA, 2013.
[47] MARSHALL D D, LICHTWARDT J A, PHAM J, et al. Summary of the aerodynamic modeling efforts for AMELIA:AIAA-2013-0973[R]. Reston:AIAA, 2013.
[48] PACIANO E N, LICHTWARDT J A, JAMESON K K, et al. Flow uniformity calibration of AMELIA's circulation control wings:AIAA-2013-0975[R]. Reston:AIAA, 2013.
[49] LICHTWARDT J A, PACIANO E N, JAMESON K K, et al. STOL performance of Cal Poly's AMELIA:AIAA-2013-0976[R]. Reston:AIAA, 2013.
[50] EHRMANN R, PACIANO E N, LICHTWARDT J A, et al. Global skin friction measurements on a circulation control airliner in the NFAC:AIAA-2013-0977[R]. Reston:AIAA, 2013.
[51] MARSHALL D D, JAMESON K K, FONG R K, et al. AMELIA Technical Memorandum[M]. Washington, D.C.:NASA(in press).
[52] HORNE W C, BURNSIDE N J. AMELIA CESTOL test:Acoustic characteristics of circulation control wing leading edge and trailing edge slot blowing:AIAA-2013-0978[R]. Reston:AIAA, 2013.
[53] BURNSIDE N J, HORNE W C. Acoustic surveys of a scaled model CESTOL transport aircraft in static and forward speed conditions:AIAA-2013-2231[R]. Reston:AIAA, 2013.
/
〈 | 〉 |