电子与控制

基于改进RPG方法的MUAVs协同目标跟踪

  • 赵长春 ,
  • 梁浩全 ,
  • 祝明 ,
  • 武哲 ,
  • 娄文杰
展开
  • 北京航空航天大学 航空科学与工程学院, 北京 100083
赵长春,男,博士研究生。主要研究方向:飞行器总体设计,多无人机协同控制。Tel:010-82339250 E-mail:zhao_changchun@buaa.edu.cn;梁浩全,男,博士。主要研究方向:飞行器总体设计及多学科设计优化。Tel:010-82339250 E-mail:haoquan.liang@buaa.edu.cn;祝明,男,博士,教授,博士生导师。主要研究方向:飞行器总体设计。Tel:010-82339250 E-mail:zhuming@buaa.edu.cn;武哲,男,博士,教授,博士生导师。主要研究方向:飞行器总体设计,飞行器隐身设计。Tel:010-82317557 E-mail:wuzhe@buaa.edu.cn;娄文杰,男,博士研究生。主要研究方向:无人机自主飞行控制,机器学习。Tel:010-82339250 E-mail:louwenjie1990@gmail.com

收稿日期: 2015-07-10

  修回日期: 2015-10-30

  网络出版日期: 2015-11-03

基金资助

中国博士后科学基金(2014M560877)

MUAVs coordinated standoff target tracking by improved RPG method

  • ZHAO Changchun ,
  • LIANG Haoquan ,
  • ZHU Ming ,
  • WU Zhe ,
  • LOU Wenjie
Expand
  • School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China

Received date: 2015-07-10

  Revised date: 2015-10-30

  Online published: 2015-11-03

Supported by

China Postdoctoral Science Foundation (2014M560877)

摘要

多无人机(MUAVs)协同Standoff目标跟踪制导律由保持距离的横侧向制导律和保持相对相位角的纵向制导律组成。无人机(UAV)进行Standoff目标跟踪的横侧向制导律采用参考点制导(RPG)方法。针对UAV在基于RPG方法的制导律下存在参考视线与相对速度方向夹角需要保持为锐角、转弯速率在UAV运动方向远离目标情况下太小的不足,提出了改进RPG方法。设计了基于改进RPG方法的MUAVs协同Standoff目标跟踪横侧向制导律和纵向制导律,分析了制导律的稳定性和收敛性,并验证了改进方法的可行性。采用原始RPG方法和改进RPG方法对UAV分别跟踪静止目标和跟踪运动目标进行仿真的结果表明,UAV处于任意初始位置及飞行方向都能快速进入到期望飞行轨迹,应用改进RPG方法可使UAV围绕目标顺时针飞行或者逆时针飞行,验证了改进RPG方法比原始RPG方法的效率更高。

本文引用格式

赵长春 , 梁浩全 , 祝明 , 武哲 , 娄文杰 . 基于改进RPG方法的MUAVs协同目标跟踪[J]. 航空学报, 2016 , 37(5) : 1644 -1656 . DOI: 10.7527/S1000-6893.2015.0294

Abstract

The guidance law of multiple unmanned aerial vehicles (MUAVs) for coordinated standoff target tracking consists of two parts, the lateral guidance law which is used for keeping distance with target and longitudinal guidance law which is used for keeping relative phase angle among MUAVs. Reference point guidance (RPG) method could be used for standoff target tracking, but there are some imperfections by this method, e.g., the included angle between UAV's reference line and relative velocity should be acute angle, the turning rate is too small when UAV flies away from target. The improved RPG method is proposed based on the imperfections of the RPG method. The lateral and longitudinal guidance laws of MUAVs for coordinated standoff target tracking are designed, the stability and convergence are analyzed, and the feasibility of this method is demonstrated. Some situations of UAV encircling static target and encircling moving target are simulated separately by the improved RPG method and the original RPG method. By the improved RPG method, UAV could fly to the desired path as fast as it can when it is at arbitrary initial position and in flight direction, and the improved RPG method has higher efficiency than the original RPG method when UAV flies clockwise or counter-clockwise encircling target.

参考文献

[1] PENG H, SU F, BU Y L, et al. Cooperative area search for multiple UAVs based on RRT and decentralized receding horizon optimization[C]//Proceedings of 20097th Asian Control Conference. Piscataway, NJ:IEEE Press, 2009:298-303.
[2] MORBIDI F, MARIOTTINI G L. Active target tracking and cooperative localization for teams of aerial vehicles[J]. IEEE Transactions on Control Systems Technology, 2013, 21(5):1694-1707.
[3] TUNA G, MUMCU T V, GULEZ K. Design strategies of unmanned aerial vehicle-aided communication for disaster recovery[C]//Proceedings of 20129th International Conference on High Capacity Optical Networks and Enabling Technologies (HONET). Piscataway, NJ:IEEE Press, 2012:115-119.
[4] FREW E W, LAWRENCE D A. Cooperative stand-off tracking of moving targets by a team of autonomous aircraft:AIAA-2005-6363[R]. Reston:AIAA, 2005.
[5] FREW E W, LAWRENCE D A, MORRIS S. Coordinated standoff tracking of moving targets using Lyapunov guidance vector fields[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(2):290-306.
[6] LAWRENCE D A. Lyapunov vector fields for UAV flock coordination:AIAA-2003-6575[R]. Reston:AIAA, 2003.
[7] FREW E W. Cooperative standoff tracking of uncertain moving targets using active robot networks[C]//Proceedings of International Conference in Robotics and Automation. Piscataway, NJ:IEEE Press, 2007:3277-3282.
[8] WANG L, ZHU H Y, SHEN L C. Cooperative ground moving target standoff tracking using UAVs[C]//The 2nd International Conference on Computer and Automation Engineering (ICCAE). Piscataway, NJ:IEEE Press, 2010:377-382.
[9] 王林. 多无人机协同目标跟踪问题建模与优化技术研究[D]. 长沙:国防科学技术大学, 2011:106-108. WANG L. Modeling and optimization multi-UAVs cooperative target tracking[D]. Changsha:National University of Defense Technology, 2011:106-108(in Chinese).
[10] LIM S, KIM Y, LEE D, et al. Standoff target tracking using a vector field for multiple unmanned aircrafts[J]. Journal of Intelligent and Robotic Systems, 2013, 69(1-4):347-360.
[11] OH H, KIM S, SHIN H, et al. Coordinated standoff tracking of groups of moving targets using multiple UAVs[C]//Proceedings of 201321st Mediterranean Conference on Control & Automation. Piscataway, NJ:IEEE Press, 2013:969-977.
[12] OH H, KIM S, SHIN H. Coordinated standoff tracking of moving target groups using multiple UAVs[J]. Aerospace and Electronic Systems, 2015, 51(2):1501-1514.
[13] MOHAMAD I, AHMED T H, SIDNEY N G, et al. Using multiple quadrotor aircraft and linear model predictive control for the encirclement of a target[C]//Proceedings of IEEE International Systems Conference. Piscataway, NJ:IEEE Press, 2013:620-627.
[14] KIM S, OH H, TSOURDOS A. Nonlinear model predictive coordinated standoff tracking of a moving ground vehicle[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(2):557-566.
[15] OH H, KIM S, TSOURDOS A, et al. Decentralised standoff tracking of moving targets using adaptive sliding mode control for UAVs[J]. Journal of Intelligent & Robot System, 2014, 76(1):169-183.
[16] YAMASAKI T, BALAKRISHNAN S N, TAKANO H, et al. Coordinated standoff flights for multiple UAVs via second-order sliding modes:AIAA-2015-1770[R]. Reston:AIAA, 2015.
[17] PARK S, DEYST J, HOW J P. Performance and Lyapunov stability of a nonlinear path following guidance method[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(6):1718-1728.
[18] 王树磊, 魏瑞轩, 郭庆, 等. 面向协同standoff跟踪问题的无人机制导律[J]. 航空学报, 2014, 35(6):1684-1693. WANG S L, WEI R X, GUO Q, et al. UAV guidance law for coordinated standoff target tracking[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6):1684-1693(in Chinese).
[19] 王树磊, 魏瑞轩, 郭庆, 等. 面向机动目标跟踪的无人机横侧向制导规律[J]. 北京航空航天大学学报, 2014, 40(6):803-809. WANG S L, WEI R X, GUO Q, et al. UAV lateral guidance law for tracking of maneuvering target[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(6):803-809(in Chinese).
[20] ZUO Z, LIN T. Hyperbolic tangent function based adaptive trajectory tracking control for quadrotors[C]//Proceedings of the 25th Control and Decision Conference (CCDC). Piscataway, NJ:IEEE Press, 2013:3721-3726.
[21] ZUO Z. Global trajectory tracking control of quadrotors with input constraint[C]//Proceedings of the 32nd Chinese Control Conference (CCC), 2013:4426-4431.
[22] REN W, BEARD R W. Consensus seeking in multiagent systems under dynamically changing interaction topologies[J]. IEEE Transactions on Automatic Control, 2005, 50(5):655-661.
[23] HU J, GENG J, ZHU H. An observer-based consensus tracking control and application to event-triggered tracking[J]. Communications in Nonlinear Science & Numerical Simulation, 2015, 20(2):559-570.

文章导航

/