流体力学与飞行力学

顶部间隙对超声速膨胀器流动特性的影响

  • 黄振宇 ,
  • 钟兢军 ,
  • 杨凌 ,
  • 韩吉昂
展开
  • 大连海事大学轮机工程学院, 大连 116026
黄振宇,男,博士研究生。主要研究方向:叶轮机械气动热力学。Tel:0411-84723833,E-mail:zhenyu85keyan@163.com;杨凌,女,博士,副教授,硕士生导师。主要研究方向:叶轮机械气动热力学。Tel.:0411-84726935,E-mail:7331yangling@163.com;韩吉昂,男,博士,副教授,博士生导师。主要研究方向:叶轮机械气动热力学。Tel.:0411-84726935,E-mail:hja@dlmu.edu.cn

收稿日期: 2014-11-27

  修回日期: 2015-10-12

  网络出版日期: 2015-10-21

基金资助

高等学校博士学科点专项科研基金(20132125120006);中央高校基本科研业务费专项资金(3132014319);辽宁省高校创新团队支持计划(LT2015004)

Influence of tip clearance on flow characteristics of a supersonic expander

  • HUANG Zhenyu ,
  • ZHONG Jingjun ,
  • YANG Ling ,
  • HAN Ji'ang
Expand
  • Marine Engineering College, Dalian Maritime University, Dalian 116026, China

Received date: 2014-11-27

  Revised date: 2015-10-12

  Online published: 2015-10-21

Supported by

Specialized Research Fund for the Doctoral Program of Higher Education of China(20132125120006);The Fundamental Research Funds for the Central Universities(3132014319);Supported by Program for Liaoning Innovative Research Team in University(LT2015004)

摘要

隔板与机匣之间留有间隙,间隙的存在势必会对超声速膨胀器的内部流场和总体性能产生影响,为了获得超声速膨胀器内部间隙流动的流动细节,采用三维雷诺平均Navier-Stokes方程和标准k-ε湍流模型,就顶部间隙对超声速膨胀器流动特性的影响进行了数值研究。结果表明:膨胀流道出口斜激波导致吸力面压力高于压力面,隔板尾缘附近部分泄漏流体经间隙流回压力面侧;间隙的存在导致吸力面进口及中、后部近下端壁压力上升,而压力面前缘附近压力下降,对比同一隔板位置,间隙高度每增加1%喉部高度,超声速膨胀器隔板载荷系数最高下降2.6%;端壁损失和斜激波损失降低,但产生了泄漏损失,三维流道内总的流动损失增加,膨胀器效率降低,本文研究范围内效率最多下降8.8%;马蹄涡、泄漏涡及二者之间的相互作用是顶部区域的主要涡系结构;前缘附近气流经间隙流到吸力面侧和尾缘附近泄漏流体越过间隙重新流回压力面侧是间隙内气流的主要运动形式。

本文引用格式

黄振宇 , 钟兢军 , 杨凌 , 韩吉昂 . 顶部间隙对超声速膨胀器流动特性的影响[J]. 航空学报, 2016 , 37(2) : 555 -567 . DOI: 10.7527/S1000-6893.2015.0269

Abstract

A clearance exists between strake wall and casing, which will certainly influence internal flow field and overall performance of a supersonic expander. To obtain the flow details of tip clearance flow in a supersonic expander, the three-dimensional Reynolds-averaged Navier-Stokes equations and the k-ε turbulent model are adopted in this paper to simulate numerically the tip clearance flow of a supersonic expander. It has been found that oblique shock wave at the outlet of the expansion passage leads to the fact that static pressure of the suction surface is higher than the pressure surface, parts of the leakage fluid near the trailing edge passes the clearance and reflows to the pressure surface. Because of the tip clearance, static pressures of the suction surface at the location of inlet and near the lower end wall increase, while the pressure at the pressure surface near the leading edge decreases. Compared with the same location of the strake wall, increasing the tip clearance height by 1% throat height, load coefficient of the strake wall of supersonic expander drops by as much as 2.6%. The loss of end wall and oblique shock wave reduces, but the tip leakage loss is produced, increasing the overall flow loss of the three-dimensional flow passage, and the efficiency of the supersonic expander drops, which decreases by up to 8.8% in this paper. The horseshoe vortex, the leakage vortex, and the interaction between them constitute the main vortex system of the tip area. The airflow near the leading edge through the clearance flow to the suction surface and the leakage fluid around the trailing edge across the gap back to the pressure surface is the main form of movement within the clearance.

参考文献

[1] GUMMER V, GOLLER M, SWOBODA M. Numerical investigation of endwall boundary layer removal on highly-loaded axial compressor blade rows[J]. Journal of Turbomachinery, 2008, 130(1):011015-1-011015-9.
[2] BOOTH T C, DODGE P R, HEPWORTH H K. Rotor-tip leakage:Part I-Basic methodology[J]. Journal of Engineering for Gas Turbines and Power, 1982, 104(1):154-161.
[3] BINDON J P. The measurement and formation of tip clearance loss[J]. Journal of Turbomachinery, 1989, 111(3):257-263.
[4] YAMAMOTO A. Interaction mechanisms between tip leakage flow and the passage vortex in a linear turbine rotor cascade[J]. Journal of Turbomachinery, 1988, 111(3):329-338.
[5] YAMAMOTO A.Endwall flow/loss mechanisms in a linear turbine cascade with blade tip clearance[J]. Journal of Turbomachinery, 1989, 111(3):264-275.
[6] XIAO X W, MCCARTER A A, LAKSHMINARAYANA B. Tip clearance effects in a turbine rotor:Part I-Pressure field and loss[J]. Journal of Turbomachinery, 2000, 123(2):296-304.
[7] MCCARTER A A, XIAO X W, LAKSHMINARAYANA B. Tip clearance effects in a turbine rotor:Part Ⅱ-Velocity field and flow physics[J]. Journal of Turbomachinery, 2000, 123(2):305-313.
[8] YARAS M I, SJOLANDER S A. Effects of simulated rotation on tip leakage in a planar cascade of turbine blades:Part I-Tip gap flow[J]. Journal of Turbomachinery, 1992, 114(3):652-659.
[9] YARAS M I, SJOLANDER S A, KIND R J. Effects of simulated rotation on tip leakage in a planar cascade of turbine blades:Part Ⅱ-Downstream flow field and blade loading[J]. Journal of Turbomachinery, 1992, 114(3):660-667.
[10] 祁明旭, 丰镇平. 透平动叶顶部间隙流的表现形式及其对透平性能的影响[J]. 西安交通大学学报, 2005, 39(3):243-265. QI M X, FENG Z P. Representation formation of tip clearance flow and influence on turbine performance[J]. Journal of Xi'an Jiaotong University, 2005, 39(3):243-265(in Chinese).
[11] 祁明旭, 丰镇平. 透平动叶顶部间隙流的端壁二次流结构研究[J]. 西安交通大学学报, 2005, 39(5):445-449. QI M X, FENG Z P. Study on tip clearance flow of tur bine blade-endwall secondary flow struc-ture[J]. Journal of Xi'an Jiaotong University, 2005, 39(5):445-449(in Chinese).
[12] MOORE J, MOORE J G, HENRY G S, et al. Flow and heat transfer in turbine tip gaps[J]. Journal of Turbomachinery, 1989, 111(3):301-309.
[13] UZOL O, CHOW Y C, KATZ J, et al. Experimental investigation of unsteady flow field within a two-stage axial turbomachine using particle image velocimetry[J]. Journal of Turbomachinery, 2002, 124(4):542-552.
[14] UZOL O, CHOW Y C, KATZ J, et al. Average passage flow field and deterministic stresses in the tip and hub regions of a multistage turbomachine[J]. Journal of Turbomachinery, 2003, 125(4):714-725.
[15] NIU M S, ZANG S S. Experimental and numerical investigations of tip injection on tip clearance flow in an axial turbine cascade[J]. Experimental Thermal and Fluid Science, 2011, 35(6):1214-1222.
[16] 钟兢军, 黄振宇, 杨凌, 等. 超声速膨胀器设计及其内部流动研究[J]. 工程热物理学报, 2015, 36(1):60-66. ZHONG J J, HUANG Z Y, YANG L, et al. Research on the design and flow field of supersonic expander[J]. Journal of Engineering Thermophysics, 2015, 36(1):60-66(in Chinese).
[17] 贺旭照, 张勇, 汪广元, 等. 高超声速飞行器单壁膨胀喷管的自动优化设计[J]. 推进技术, 2007, 28(2):148-151. HE X Z, ZHANG Y, WANG G Y, et al. Automated design optimization of single expansion ramp nozzle for hypersonic vehicle[J]. Journal of Propulsion Technology, 2007, 28(2):148-151(in Chinese).
[18] 邓庆锋, 郑群, 张海, 等. 可控涡设计高负荷涡轮二次流旋涡结构及损失分析[J]. 中国电机工程学报, 2012, 32(20):108-114. DENG Q F, ZHENG Q, ZHANG H, et al. Analysis of secondary flow vortex structure and losses in a high load turbine designed by the controlled vortex method[J]. Proceedings of the CSEE, 2012, 32(20):108-114(in Chinese).
[19] DOWNEY D J, GRIFFIN L W, HUBER F W. A study of the effects of tip clearance in a supersonic turbine[J]. Journal of Turbomachinery, 2000, 122(4):674-683.
[20] 韩吉昂, 钟兢军, 严红明, 等. 旋转冲压压缩转子三维进气流道数值研究[J]. 航空动力学报, 2009, 24(5):1079-1088. HAN J A, ZHONG J J, YAN H M, et al. Numerical research of three dimensional flow-path in a ram-rotor[J]. Journal of Aerospace Power, 2009, 24(5):1079-1088(in Chinese).
[21] 邓庆锋, 郑群, 刘春雷, 等. 基于控制轴向速度变化的1.5级涡轮压力可控涡设计[J]. 航空学报, 2011, 32(12):2182-2193. DENG Q F, ZHENG Q, LIU C L, et al. Pressure controlled vortex design of 1.5-stage turbine based on the method of controlling axial velocity variation[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(12):2182-2193(in Chinese).
[22] 杨承宇, 张靖周, 单勇. 单边膨胀喷管红外辐射特性的数值模拟[J]. 航空学报, 2010, 31(10):1919-1926. YANG C Y, ZHANG J Z, SHAN Y. Numerical simulation on infrared radiation characteristics of single expansion ramp nozzles[J]. Acta Aeronautica et Astronautica Sinica, 2010, 32(10):1919-1926(in Chinese).
[23] 张少丽, 单勇, 张靖周. 单边膨胀喷管气动和红外辐射特性数值研究[J]. 航空动力学报, 2011, 26(7):1502-1508. ZHANG S L, SHAN Y, ZHANG J Z. Numerical study on aerodynamic and infrared radiation characteristics of single expansion ramp nozzle[J]. Journal of Aerospace Power, 2011, 26(7):1502-1508(in Chinese).
[24] 徐华松, 谷良贤. 高超声速飞行器后体喷管设计[J]. 航空动力学报, 2007, 22(2):257-260. XU H S, GU L X. Nozzle afterbody design of hyper sonic flight vehicle[J]. Journal of Aerospace Power, 2007, 22(2):257-260(in Chinese).
[25] EDWARDS C L W, SMALL W J, WEIDNER J P, et al. Studies of scramjet/airframe integration techniques for hyper-sonic aircraft:AIAA-1975-0058[R]. Reston:AIAA, 1975.
[26] SCHNEIDER A, KOSCHEL W W. Detailed analysis of a mixed compression hypersonic intake[R]. Florence:Fourteenth international symposium on air breathing engines, 1999.
[27] SJOLANDER S A, CAO D. Measurements of the flow in an idealized turbine tip gap[J]. Journal of Turbomachinery, 1995, 117(4):578-584.

文章导航

/