重载航空负载模拟器非线性最优前馈补偿控制
收稿日期: 2015-06-11
修回日期: 2015-10-13
网络出版日期: 2015-10-15
基金资助
国家自然科学基金(51275450,51521064);国家"973"计划(2014CB046403)
Nonlinear optimal feedforward compensation controller for heavy load aviation load simulator
Received date: 2015-06-11
Revised date: 2015-10-13
Online published: 2015-10-15
Supported by
National Natural Science Foundation of China(51275450,51521064);National Basic Research Program of China(2014CB046403)
重载航空负载模拟器是用来模拟"C919"、"运-20"等重载飞机舵面工作载荷的地面仿真平台。设计了一种重载航空负载模拟器,采用非对称缸作为执行机构以在小体积下完成大载荷加载。为了消除多余力对重载航空负载模拟器加载精度的影响,分析了非对称缸正反向运动和大载荷变化下伺服阀流量增益的非线性变化对前馈补偿函数的影响,并设计了非线性参数估计控制器。同时分析了加速度等动态参数变化和静态参数的误差对多余力消除的影响,设计了参数最优控制器。仿真和试验结果均表明,相比于传统前馈补偿控制器,所设计的非线性最优前馈补偿控制器下的加载精度和多余力抑制能力提高了50%以上。
欧阳小平 , 李锋 , 朱莹 , 杨上保 , 杨华勇 . 重载航空负载模拟器非线性最优前馈补偿控制[J]. 航空学报, 2016 , 37(2) : 669 -679 . DOI: 10.7527/S1000-6893.2015.0277
Heavy load aviation load simulator is the ground simulation platform, which is used to simulate the real work load of the heavy-duty aircrafts such as C919 and Yun-20. A heavy-duty aviation load simulator is developed to achieve large load in limited space and the asymmetric cylinder is used as the actuator. In order to eliminate the influence of surplus force on the loading precision of the overloaded simulator, the influence of the bidirectional motions of the cylinder and the nonlinear flow gain coefficient of the servo valve for the feedforward compensation function are analyzed, and the nonlinear parameter estimation controller has been proposed. Meanwhile, the influence of dynamic parameters' variation(such as acceleration) and static parameter error for eliminating the excessive force is analyzed, and the parameter optimal controller is developed. Both simulation and test results show that the performance of the developed feedforward compensation controller has been improved by more than 50% in the loading precision and the eliminating ability of the surplus force, compared to the traditional feedforward compensation controllers.
Key words: heavy load; load simulator; surplus force; nonlinear control; feedforward control
[1] 杨华勇, 丁斐, 欧阳小平, 等. 大型客机液压能源系统[J]. 中国机械工程, 2009, 20(18):2152-2159. YANG H Y, DING F, OUYANG X P, et al. Hydraulic power systems for trunk line aircrafts[J]. China Mechanical Engineering, 2009, 20(18):2152-2159(in Chinese).
[2] WANG C W, JIAO Z X, SHANG Y X, et al. Suppress surplus torque based on velocity closed-loop synchronization[C]//Proceedings of 2011 International Conference on Fluid Power and Mechatronics(FPM). Piscataway, NJ:IEEE Press, 2011:435-439.
[3] WANG C W, JIAO Z X, WU S, et al. "Dual-loop control" of load simulator[C]//Proceedings of 2012 10th IEEE International Conference on Industrial Informatics(INDIN). Piscataway, NJ:IEEE Press, 2012:530-535.
[4] AHN K K, TRUONG D Q, THANH T Q, et al. Online self-tuning fuzzy proportional-integral-derivative control for hydraulic load simulator[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2008, 222(2):81-95.
[5] 华清. 电液负载模拟器关键技术的研究[D]. 北京:北京航空航天大学, 2001. HUA Q. Studies on the key technology of electrohydraulic load simulator[D]. Beijing:Beijing University of Aeronautics and Astronautics, 2001(in Chinese).
[6] YU C Y, LIU Q H, ZHAO K D. Velocity feedback in load simulator with a motor synchronizing in position[J]. Journal of Harbin Institute of Technology:New Series, 1998, 3(5):78-81.
[7] 郝经佳. 双阀控制在电液负载仿真台中的应用[J]. 中国机械工程, 2002, 13(10):814-816. HAO J J. Application of dual valve in electro hydraulic simulator[J]. China Mechanical Engineering, 2002, 13(10):814-816(in Chinese).
[8] NAM Y, HONG S K. Force control system design for aerodynamic load simulator[J]. Control Engineering Practice, 2002, 10(5):549-558.
[9] NIKSEFAT N, SEPEHRI N. Design and experimental evaluation of a robust force controller for an electro-hydraulic actuator via quantitative feedback theory[J]. Control Engineering Practice, 2000, 8(12):1335-1345.
[10] LI G Q, CAO J, ZHANG B, et al. Design of robust controller in electrohydraulic load simulator[C]//Proceedings of 2006 International Conference on Machine Learning and Cybernetics. Piscataway, NJ:IEEE Press, 2006:779-784.
[11] YAO J Y, JIAO Z X, YAO B, et al. Nonlinear adaptive robust force control of hydraulic load simulator[J]. Chinese Journal of Aeronautics, 2012, 25(5):766-775.
[12] WANG C W, JIAO Z X, WU S, et al. A practical nonlinear robust control approach of electro-hydraulic load simulator[J]. Chinese Journal of Aeronautics, 2014, 27(3):735-744.
[13] TRUONG D Q, AHN K K. Force control for hydraulic load simulator using self-tuning grey predictor-fuzzy PID[J]. Mechatronics, 2009, 19(2):233-246.
[14] TRUONG D Q, AHN K K, SOO K J, et al. Application of fuzzy-PID controller in hydraulic load simulator[C]//Proceedings of 2007 International Conference on Mechatronics and Automation. Piscataway, NJ:IEEE Press, 2007:3338-3343.
[15] PARK Y J, LEE S Y, CHO H S. A genetic algorithm-based fuzzy control of an electro-hydraulic fin position servo system[C]//Fuzzy Systems Conference Proceedings. Piscataway, NJ:IEEE Press, 1999:1361-1366.
[16] WANG X, WANG S, WANG X. Electrical load simulator based on velocity-loop compensation and improved fuzzy-PID[C]//Proceedings of International Symposium on Industrial Electronics. Piscataway, NJ:IEEE Press, 2009:238-243.
[17] 王新民, 刘卫国. 电液伺服加载的神经网络内部反馈控制[J]. 航空学报, 2007, 28(3):690-694. WANG X M, LIU W G. Neural-network internal feedback control for electro-hydraulic servo loading[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(3):690-694(in Chinese).
[18] 董传阳. 民机液压原理性验证系统研究[D]. 杭州:浙江大学, 2014. DONG C Y. Research on the hydraulic test system of the civil aircraft[D]. Hangzhou:Zhejiang University, 2014(in Chinese).
[19] 汪成文, 焦宗夏, 罗才瑾. 基于改进的速度同步控制的电液负载模拟器[J]. 航空学报, 2012, 33(9):1717-1725. WANG C W, JIAO Z X, LUO C J. An improved velocity synchronization control on electro-hydraulic load simulator[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9):1717-1725(in Chinese).
[20] YAO J Y, JIAO Z X, SHANG Y X, et al. Adaptive nonlinear optimal compensation control for electro-hydraulic load simulator[J]. Chinese Journal of Aeronautics, 2010, 23(6):720-733.
[21] 吴振顺. 液压控制系统[M]. 北京:高等教育出版社, 2008:39-47. WU Z S. Hydraulic control system[M]. Beijing:High Education Press, 2008:39-47(in Chinese).
[22] 卢长耿, 李金良. 液压控制系统的分析与设计[M]. 北京:煤炭工业出版社, 1991:121-124. LU C G, LI J L. Hydraulic control system[M]. Beijing:Coal Industry Press, 1991:121-124(in Chinese).
/
〈 | 〉 |