流体力学与飞行力学

临近空间太阳能飞行器横航向稳定性

  • 李锋 ,
  • 叶川 ,
  • 李广佳 ,
  • 郑安波 ,
  • 付义伟
展开
  • 中国航天空气动力技术研究院, 北京 100074
李锋,男,博士,研究员,博士生导师。主要研究方向:流体力学,飞行器设计。Tel:010-68375166 E-mail:lifengcaaa@163.com;叶川,男,博士,工程师。主要研究方向:飞行器设计,飞行力学。Tel:010-68741286 E-mail:15901480592@163.com;李广佳,男,硕士,高级工程师。主要研究方向:流体力学,飞行器设计。E-mail:18911898039@163.com;郑安波,男,博士,工程师。主要研究方向:飞行器设计。E-mail:olboy@sina.com;.cn;付义伟,男,硕士,高级工程师。主要研究方向:流体力学,飞行器设计。E-mail:yimei0009@aliyun.com

收稿日期: 2015-06-12

  修回日期: 2015-08-07

  网络出版日期: 2015-09-30

基金资助

国家"973"计划(2014CB744803)

Lateral-directional stability of near-space solar-powered aircraft

  • LI Feng ,
  • YE Chuan ,
  • LI Guangjia ,
  • ZHENG Anbo ,
  • FU Yiwei
Expand
  • China Academy of Aerospace Aerodynamics, Beijing 100074, China

Received date: 2015-06-12

  Revised date: 2015-08-07

  Online published: 2015-09-30

Supported by

National Basic Research Program of China (2014CB744803)

摘要

临近空间太阳能飞行器的横航向气动导数和质量特性与常规飞行器存在显著差异,其横航向模态具有不同于常规飞行器的特点。理论分析表明,临近空间太阳能飞行器滚转交感动导数较大,偏航阻尼动导数较小,导致螺旋模态发散;航向气动阻尼力矩和惯性力矩之比较大,因而荷兰滚模态阻尼比较大。为解决常规线性化动力学模型无法体现风场影响的问题,以地速在机体坐标系中的投影作为状态变量,建立了考虑风场影响、适用于地速为0 m/s状态的线性化横航向动力学模型。利用此模型分析了临近空间太阳能飞行器在水平风和垂直风中的横航向稳定性。分析结果表明,稳定风场对横航向模态特征根无影响,但会导致横航向模态特征矢量发生改变。建立的动力学模型可用于此类飞行器的动力学分析和仿真。

本文引用格式

李锋 , 叶川 , 李广佳 , 郑安波 , 付义伟 . 临近空间太阳能飞行器横航向稳定性[J]. 航空学报, 2016 , 37(4) : 1148 -1158 . DOI: 10.7527/S1000-6893.2015.0225

Abstract

The lateral-directional aerodynamic derivatives and mass characteristics of the near-space solar-powered aircraft are very different from conventional aircraft. The characteristics of its lateral-directional modes differ from conventional aircraft. Theoretic analysis shows that the large rolling-moment-due-to-yaw-rate derivative and small yawing-moment-due-to-yaw-rate derivative of the near-space solar-powered aircraft result in the divergent spiral mode. Moreover, the ratio of aerodynamic damping moment to inertia moment is large, causing the high damping ratio of the Dutch roll mode. In order to solve the problem that the impact of wind could not be represented in conventional linear dynamic model, a linear lateral-directional dynamic model, which considers the impact of wind and is applied to the 0 m/s ground speed state, is established by employing the projection of ground speed onto body coordinate system as the state variable. The lateral-directional stabilities of the near-space solar-powered aircraft in horizontal and vertical wind are analyzed using the model. The analysis indicates that stable wind field has no impact on eigenvalues of lateral-directional modes, while it leads to different eigenvectors. The established dynamic model could be used for dynamic analysis and simulation of this kind of aircraft.

参考文献

[1] 昌敏, 周洲, 成柯. 高空驻留太阳能飞机主动式光伏组件面功率特性研究[J]. 航空学报, 2013, 34(2):273-281. CHANG M, ZHOU Z, CHENG K. Exploring the characteristics of power density of tracking PV modules for high-altitude stationary solar-powered airplanes[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2):273-281(in Chinese).
[2] 昌敏, 周洲, 王睿. 基于机翼-帆尾的高纬度跨年驻留太阳能飞机总体参数设计方法[J]. 航空学报, 2014, 35(6):1592-1603. CHANG M, ZHOU Z, WANG R. Primary parameters determination for year-round solar-powered aircraft of wing-sail type at higher latitudes[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6):1592-1603(in Chinese).
[3] 马东立, 包文卓, 乔宇航. 基于重力储能的太阳能飞机飞行轨迹研究[J]. 航空学报, 2014, 35(2):408-416. MA D L, BAO W Z, QIAO Y H. Study of flight path for solar-powered aircraft based on gravity energy reservation[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):408-416(in Chinese).
[4] 马东立, 包文卓, 乔宇航. 利于冬季飞行的太阳能飞机构型研究[J]. 航空学报, 2014, 35(6):1581-1591. MA D L, BAO W Z, QIAO Y H. Study of solar-powered configuration beneficial to winter flight[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6):1581-1591(in Chinese).
[5] 付志超, 仲维国, 陈志平, 等. 大展弦比柔性机翼的结构动力学特性试验研究[J]. 航空学报, 2013, 34(9):2177-2184. FU Z C, ZHONG W G, CHEN Z P, et al. Experimental study on structural dynamic characteristics of flexible high-aspect-ratio wings[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9):2177-2184(in Chinese).
[6] NOLL T E, ISHMAEL S D, HENWOOD B, et al. Technical findings, lessons learned, and recommendations resulting from the Helios prototype vehicle mishap[C]//Meeting Proceedings of UAV Design Processes/Design Criteria for Structures. Neuilly-sur-Seine, France:RTO, 2007:3.4-1-3.4-18.
[7] CESNIL C E S, SU W H. Nonlinear aeroelastic simulation of X-HALE:a very flexible UAV:AIAA-2011-0126[R]. Reston:AIAA, 2011.
[8] PATIL M J, HODFES D H, CESNIL C E S. Nonlinear aeroelasticity and flight dynamics of high-altitude long-endurance aircraft:AIAA-1999-1470[R]. Reston:AIAA, 1999.
[9] KASZYNSKI A A. X-HALE:the development of a research platform for the validation of nonlinear aeroelastic codes[D]. Wright-Patterson Air Force Base, Ohio:Department of the Air Force Air University, Air Force Institute of Technology, 2011.
[10] KASZYNSKI B E. Simulations for the test flight of an experimental HALE aircraft[D]. Wright-Patterson Air Force Base, Ohio:Department of the Air Force Air University, Air Force Institute of Technology, 2011.
[11] MURUA J, PALACIOS R, GRAHAM J M R. Open-loop stability and closed-loop gust alleviation on flexible aircraft including wake modeling:AIAA-2012-1484[R]. Reston:AIAA, 2012.
[12] 肖伟, 周洲, 祝小平, 等. 高空太阳能无人机飞行动力学建模与分析[J]. 飞行力学, 2012, 30(5):385-388. XIAO W, ZHOU Z, ZHU X P, et al. Modelling and analysis on flight dynamics of high altitude solar UAV[J]. Flight Dynamics, 2012, 30(5):385-388(in Chinese).
[13] 肖伟, 周洲, 祝小平, 等. 柔性太阳能无人机飞行动力学与控制仿真研究[J]. 系统仿真学报, 2014, 26(3):385-388. XIAO W, ZHOU Z, ZHU X P, et al. Simulation of flight dynamics and control of HALE solar UAV[J]. Journal of System Simulation, 2014, 26(3):385-388(in Chinese).
[14] 冯扬帆, 周洲, 肖伟. 高空太阳能弹性无人机纵向动力学特性研究[J]. 飞行力学, 2014, 32(1):1-4. FENG Y F, ZHOU Z, XIAO W. Study on longitudinal flight dynamic characteristics of high altitude flexibility solar UAV[J]. Flight Dynamics, 2014, 32(1):1-4(in Chinese).
[15] 王睿, 祝小平, 周洲. 多螺旋桨太阳能无人机横航向操稳特性研究[J]. 飞行力学, 2012, 30(1):5-8. WANG R, ZHU X P, ZHOU Z. Research on lateral-directional flying qualities of multi-propeller solar powered UAV[J]. Flight Dynamics, 2012, 30(1):5-8(in Chinese).
[16] 肖伟, 周洲, 王睿, 等. 分布式推进系统对太阳能无人机横航向飞行品质的影响研究[J]. 西北工业大学学报, 2012, 30(6):868-873. XIAO W, ZHOU Z, WANG R, et al. Effectively determining some selected effects of distributed propulsion system on lateral flight quality of solar UAV[J]. Journal of Northwestern Polytechnical University, 2012, 30(6):868-873(in Chinese).
[17] 方振平, 陈万春, 张曙光. 航空飞行器飞行动力学[M]. 北京:北京航空航天大学出版社, 2005:325. FANG Z P, CHEN W C, ZHANG S G. Aircraft flight dynamics[M]. Beijing:Beijing University of Aeronautics and Astronautics Press, 2005:325(in Chinese).
[18] 程路, 姜长生, 都延丽, 等. 变化风场下近空间飞行器机体/发动机一体化飞行力学建模与分析[J]. 宇航学报, 2012, 33(5):547-555. CHENG L, JIANG C S, DU Y L, et al. Flight dynamics modeling of airframe/engine integrated near space vehicle in varying wind field[J]. Journal of Astronautics, 2012, 33(5):547-555(in Chinese).
[19] 肖业伦, 金长江. 大气扰动中的飞行原理[M]. 北京:国防工业出版社, 1993:80. XIAO Y L, JIN C J. Flight dynamics in atmospheric disturbance[M]. Beijing:National Defense Industry Press, 1993:80(in Chinese).
[20] 埃特肯B. 大气飞行动力学[M]. 何植岱, 译. 北京:科学出版社, 1979:164. ETKIN B. Dynamics of atmospheric flight[M]. HE Z D, translated. Beijing:Science Press, 1979:164(in Chinese).
[21] 雷曼尔D P. 现代飞机设计[M]. 钟定逵, 俞敦信, 译. 北京:国防工业出版社, 1992:321. RAYMER D P. Modern aircraft design[M]. ZHONG D K, YU D X, translated. Beijing:National Defense Industry Press, 1993:321(in Chinese).

文章导航

/