部件与分系统设计及其他

新一代智能座舱总体结构设计

  • 吴文海 ,
  • 张源原 ,
  • 刘锦涛 ,
  • 周思羽 ,
  • 梅丹
展开
  • 1. 海军航空工程学院青岛校区, 青岛 266041;
    2. 海军航空兵学院, 葫芦岛 125000
吴文海 男,博士,教授,博士生导师。主要研究方向:精确制导与飞行控制。Tel.:0532-51833632,E-mail:109889354@qq.com

收稿日期: 2015-05-11

  修回日期: 2015-08-11

  网络出版日期: 2015-09-30

Overall architecture design of new generation intelligent cockpit

  • WU Wenhai ,
  • ZHANG Yuanyuan ,
  • LIU Jintao ,
  • ZHOU Siyu ,
  • MEI Dan
Expand
  • 1. Qingdao Branch, Naval Aeronautical Engineering Institute, Qingdao 266041, China;
    2. Navy Flight Academy, Huludao 125000, China

Received date: 2015-05-11

  Revised date: 2015-08-11

  Online published: 2015-09-30

摘要

传统座舱通过引入各种自动化功能,辅助飞行员完成任务,减小操控负担。随着战场态势变化的日趋繁杂,传统座舱设计辅助飞行员的能力达到了瓶颈,亟需研究总体结构设计改进方法,提升辅助决策能力。深入分析了传统座舱存在的问题,研究了适应新型战机的座舱设计,并综合运用态势评估、故障诊断等技术,以任务为核心,对新一代智能座舱的结构及其辅助决策等级进行了设计,阐述了各系统内部结构及功能,探讨了智能座舱与飞行员之间的关系转变。最后,梳理了相关技术途径,指明了下一步的研究重点。

本文引用格式

吴文海 , 张源原 , 刘锦涛 , 周思羽 , 梅丹 . 新一代智能座舱总体结构设计[J]. 航空学报, 2016 , 37(1) : 290 -299 . DOI: 10.7527/S1000-6893.2015.0231

Abstract

Traditional cockpit assists pilot to complete missions and reduce their burden by introducing a variety of automated functions.With the increasingly severe changes of battlefield situation,the ability of traditional cockpit to assist pilot reaches the bottleneck and gives rise to the research of new design of overall architecture to improve assisting decision ability.The problem of traditional cockpit is analyzed,the cockpit adapted to the new fighter is discussed and its overall architecture and decision support grades are designed centered on the mission by integrating many technologies under research such as situation assessment and fault diagnosis.The internal structure and functions of each system are designed and the changing relationship between pilot and cockpit is discussed.Finally,the current shortage of research is pointed out to show the key work of future study.

参考文献

[1] 苏建民.飞机座舱设计人机交互技术研究[D].西安:西北工业大学,2002:1-2.SU J M.Research of cockpit and man-machine interactive interface[D].Xi'an:Northwestern Polytechnical University,2002:1-2(in Chinese).
[2] YANNONE R M.The role of expert systems in the advanced tactical fighter of the 1990's[C]//Proceedings of the 1985 National Aerospace and Electronics Conference,1985:12-16.
[3] WIENER E L.Human factors of advanced technology("Glass Cockpit") transport aircraft:NASA Contractor Report 177[R].Washington,D.C.:NASA,1989.
[4] SARTER N B,WOODS D D.Pilot interaction with cockpit automation Ⅱ:An experimental study of plots' model and awareness of the flight management and guidance system[J].International Journal of Aviation Psychology,1994,4(1):1-28.
[5] SARTER N B,WOODS D D,BILLINGS C E.Automation surprises[J].Handbook of Human Factors and Ergonomics 2,1997,2(1):1926-1943.
[6] PARASURAMAN R,SHERIDAN T B,WICKENS C D.A model for type sand levels of human interaction with automation[J].IEEE Transactions on Systems,Man and Cybernetics,2000,30(3):286-297.
[7] TAYLOR R M.Cognitive cockpit systems engineering:pilot authorization and control of tasks[C]//The 8th Conference on Cognitive Science Approaches to Process Control,2001:1-10.
[8] 符小卫,李金亮,高晓光.威胁联网下无人作战飞机突防作战航迹规划[J].航空学报,2014,35(4):1042-1052.FU X W,LI J L,GAO X G.Defense penetration path planning for UCAV based on threat netting[J].Acta Aeronautica et Astronautica Sinica,2014,35(4):1042-1052(in Chinese).
[9] 马冠军,段海滨,刘森琪,等.基于MAX-MIN自适应蚁群优化的无人作战飞机航路规划[J].航空学报,2008,29(增刊):S243-S248.MA G J,DUAN H B,LIU S Q,et al.UCAV path planning based on MAX-MIN self-adaptive ant colony optimization[J].Acta Aeronautica et Astronautica Sinica,2008,29(Sup.):S243-S248(in Chinese).
[10] 段海滨,丁全心,常俊杰,等.基于并行蚁群优化的多UCAV任务分配仿真平台[J].航空学报,2008,29(增刊):S192-S197.DUAN H B,DING Q X,CHANG J J.Multi-UCAVs task assignment simulation platform based on parallel ant colony optimization[J].Acta Aeronautica et Astronautica Sinica,2008,29(Sup.):S192-S197(in Chinese).
[11] 王玉惠,韩占朋,陈哨东,等.防空态势评估系统分析及新型评估模型研究[J].南京航空航天大学学报,2014,46(4):558-566.WANG Y H,HAN Z P,CHEN S D,et al.Analysis and modeling of threat evaluation system in air defense operations[J].Journal of Nanjing University of Aeronautics & Astronautics,2014,46(4):558-566(in Chinese).
[12] 马延豪,张耀中,张莹.基于影响网络的态势估计[J].火力与指挥控制,2014,39(6):90-93.MA Y H,ZHANG Y Z,ZHANG Y.Situation assessment based on influence net[J].Fire Control & Command Control,2014,39(6):90-93(in Chinese).
[13] 肖冰,胡庆雷,霍星,等.执行器故障的挠性航天器姿态滑模容错控制[J].航空学报,2011,32(10):1869-1878.XIAO B,HU Q L,HUO X,et al.Sliding mode fault tolerant attitude control for flexible spacecraft under actuator fault[J].Acta Aeronautica et Astronautica Sinica,2011,32(10):1869-1878(in Chinese).
[14] 李业波,李秋红,黄向华,等.航空发动机气路部件故障融合诊断方法研究[J].航空学报,2014,35(6):1612-1622.LI Y B,LI Q H,HUANG X H,et al.Research on gas fault fusion diagnosis of aero-engine component[J].Acta Aeronautica et Astronautica Sinica,2014,35(6):1612-1622(in Chinese).
[15] 熊智,邵慧,华冰,等.改进故障隔离的容错联邦滤波[J].航空学报,2015,36(3):929-938.XIONG Z,SHAO H,HUA B,et al.An improved fault tolerant federated filter with fault isolation[J].Acta Aeronautica et Astronautica Sinica,2015,36(3):929-938(in Chinese).
[16] SANDERS W H,MEYER J F.Reduced base model construction methods for stochastic activity networks[J].Selected Areas in Communications,1991,9(1):25-36.
[17] BOOCH G,DOUGLASS B,CERNOSEK G.Unified modeling language for real-time systems design[M].1996:1-10.
[18] AALST W M P.Formalization and verification of event-driven process chains[J].Information and Software Technology,1999,41(10):639-650.
[19] STEVENS W,MYERS.G,CONSTANTINE L.Structured dsign[J].IBM Systems Journal,1974,13(2):115-139.
[20] PETERSON J L.Petri nets theory and the modeling of sytems[M].1981:1-21.
[21] KELLEY T D,LONG L N.Deep blue cannot play checkers:the need for generalized intelligence for mobile robots[J].Journal of Robotics,2010,2010:1-8.
[22] NEWELL A.Soar:a cognitive architecture in perspective[M].1990:1-15.
[23] ERNST G,NEWELL A.GPS:a case study in generality and problem solving[M].1969:1-21.
[24] LANGLEY P,LAIRD J E,ROGERS S.Cognitive architectures:Research issues and challenges[J].Cognitive Systems Research,2009,10(2):141-160.
[25] ANDERSON J R,LEBIERE C.The atomic components of thought[M].1998:1-25.
[26] MEYER D E,KIERAS D E.A computational theory of executive cognitive processes and multiple-task performance:part 1.Basic mechanisms[J].Psychological Review,1997:104(1):3-65.
[27] SUN R.The CLARION cognitive architecture:extending cognitive modeling to social simulation[M].2006:1-22.
[28] JILK D J,LEBIERE C,O'REILLY R C,et al.SAL:an explicitly pluralistic cognitive architecture[J].Journal of Experimental & Theoretical Artificial Intelligence,2008,20(3):197-218.
[29] LANGLEY P,MCKUSICK K,ALLEN J.A design for the Icarus architecture[J].SIGART Bulletin,1991:2,104-109.
[30] JONES R M,LAIRD J E,NIELSEN P E,et al.Automated intelligent pilots for combat flight simulation[J].AI Magazine,1999,20(1):27.
[31] HANFORD S D,JANRATHITIKARN O,LONG L N.Control of mobile robots using the soar cognitive architecture[J].Journal of Aerospace Computing,Information,and Communication,2009,6(2):69-91.
[32] GINETTI P,DODD T,THOMPSON H.Simulation of a soar-based autonomous mission management system for unmanned aircraft[J].Journal of Aerospace Information Systems,2013,10(2):53-70.

文章导航

/