等离子体激励器控制平板边界层转捩实验研究
收稿日期: 2015-03-26
修回日期: 2015-09-16
网络出版日期: 2015-09-30
基金资助
国家"973"计划:大型客机减阻机理和方法研究(2014CB744800);南京航空航天大学基本科研业务费(NS2013013);中央高校基本科研业务费专项资金(NP2014602);航空科学基金(2013ZA52009)
Experimental study of controlling flat transition using surface dielectric barrier discharge actuator
Received date: 2015-03-26
Revised date: 2015-09-16
Online published: 2015-09-30
Supported by
National Basic Research Program of China:Mechanism and Method for Drag Reduction of Trunk Liner (2014CB744800);NUAA Fundamental Research Funds (NS2013013);Fundamental Research Funds for the Central Universities (NP2014602);Aeronautical Science Foundation of China (2013ZA52009)
在低速射流风洞中,研究了单级介质阻挡放电等离子体激励器对光滑平板边界层转捩位置的控制作用。实验采用热线测量技术,以边界层速度脉动与平均速度型作为转捩判据。实验发现,在来流速度为15 m/s,激励器连续放电参数为输出电压峰峰值11 kV,频率4.7 kHz时,在激励器放电作用下,平板边界层转捩位置推迟约40 mm。在相同的来流条件和激励器布局下,研究了不同放电参数对边界层内速度型,速度脉动以及频谱分布的影响,发现提高放电电压、频率和占空比能进一步推迟转捩。实验结果表明:激励器产生的射流效应可以增强边界层流动的稳定性,随放电电压、频率以及占空比增强,射流能量增大,因此边界层稳定性进一步加强,转捩控制效果也更明显。
陆纪椿 , 史志伟 , 杜海 , 胡亮 , 李铮 , 宋天威 . 等离子体激励器控制平板边界层转捩实验研究[J]. 航空学报, 2016 , 37(4) : 1166 -1173 . DOI: 10.7527/S1000-6893.2015.0256
In a low speed jet wind tunnel, the transition point of a flat plate controlled by a single-stage dielectric barrier discharge (DBD) plasma actuator has been studied. Applying hot wire measurement technology, the transition location is judged by boundary layer velocity fluctuation and velocity profile. The flow speed of the experiments is 15m/s and the discharge parameters of the actuator are voltage peak to peak value is 11 kV, frequency is 4.7 kHz. After the analysis of the velocity fluctuation of the same height within boundary layer, the results show that the transition point is delayed about 40 mm farther downstream when the actuator is working. With the same flow speed and actuator distribution, actuators with different discharge parameters and their effects on the velocity profile, velocity fluctuation and amplitude spectrum of hot-wire signal within the boundary layer have been studied. It is discovered that higher discharge voltage,frequency and duty ratio can further delay the transition point. According to the experiment results, the jet generated by the plasma actuator strengthens the fluid stability of the boundary layer. As the discharge voltage, frequency and duty ratio goes up, the power of the jet gets stronger, which further strengthens the boundary layer stability and delays the transition location.
[1] WRIGHT M C M, NELSON P A. Wind tunnel experiments on the optimization of distributed suction for laminar flow control[J]. Proceedings of the Institution of Mechanical Engineers, 2001, 215(6):343.
[2] ZAMAN K B. Effect of acoustic exciation on the flow over a low-Re airfoil[J]. Journal of Fluid Mechanics, 1987, 182(4):127-148.
[3] ARGA S P S. Buoyancy effects in a horizontal flat-plate boundary layer[J]. Journal of Fluid Mechanics, 1975, 68(2):321-343.
[4] MALIK M R.Ion wind drag reduction[C]//21st Aerospace Sciences Meeting. Reston:AIAA, 1983:203-208.
[5] ROTH J R.Interaction of electromagentic fields with magnetized plasmas[R]. Tennessee:Tennessee University, 1994.
[6] ROTH J R.Investigation of a uniform glow discharge plasma in atmospheric air[R]. Tennessee:Tennessee University, 1994.
[7] ROTH J R,Sherman D M.Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma[C]//36th AIAA Aerospace Science Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 1997:113-119.
[8] GRUNDMANN S, CAMERON T. Experimental transition delay using glow-discharge plasma actuators[J]. Experiments in Fluids, 2007, 42(4):653-657.
[9] GRUNDMANN S, TROPEA C. Active cancellation of artificially introduced Tollmien-Schlichting waves using plasma actuators[J]. Experiments in Fluids, 2008, 44(5):795-806.
[10] DUCHMANN A, SIMON B, MAGIN P, et al. In-flight transition delay with DBD plasma actuators[C]//51st AIAA Aerospace Science Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2013:103-114.
[11] HANSON R E, LAVOIE P, BADE K M,et al.Steady-state closed-loop control of bypass boundary layer transition using plasma actuators[C]//50st AIAA Aerospace Science Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2012:82-95.
[12] BELSON B A, MEIDELL K, HANSON R,et al.Comparison of plasma actuators in simulations and experiments for control of bypass transition[C]//50th AIAA Aerospace Science Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2012:101-109.
[13] 史志伟, 范本根. 不同结构等离子体激励器流场特性实验研究[J]. 航空学报, 2011, 32(9):1583-1589. SHI Z W, FAN B G. Experimental study on flow field characteristics of different plasma actuators[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9):1583-1589(in Chinese).
[14] 杜海, 史志伟. 等离子体激励器对微型飞行器横航向气动力矩控制的实验研究[J]. 航空学报, 2012, 32(10):1781-1790. DU H, SHI Z W. Experimental study of directional-lateral aerodynamic moment control of micro air vehicle by plasma actuators[J]. Acta Aeronautica et Astronautica Sinca, 2012, 32(10):1781-1790(in Chinese).
[15] 杜海. 等离子体流动控制技术及其在飞行器上的应用研究[D]. 南京:南京航空航天大学, 2012. DU H. Plasma flow control technology and its application on flight vehicle[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012(in Chinese).
/
〈 | 〉 |