固体力学与飞行器总体设计

一种改进的航空发动机结构概率风险评估方法

  • 李岩 ,
  • 张曙光 ,
  • 宫綦
展开
  • 1. 北京航空航天大学交通科学与工程学院, 北京 100083;
    2. 中航工业中国航空综合技术研究所, 北京 100028
张曙光,女,博士,教授,博士生导师。主要研究方向:航空器适航技术。Tel:010-82315237,E-mail:gnahz@buaa.edu.cn;宫綦,男,博士,高级工程师。主要研究方向:航空器结构可靠性与系统安全性。Tel:010-84380948,E-mail:gongqi518@163.com

收稿日期: 2014-12-23

  修回日期: 2015-07-04

  网络出版日期: 2015-09-30

基金资助

国家级项目

An improved probabilistic risk assessment method of structural parts for aeroengine

  • LI Yan ,
  • ZHANG Shuguang ,
  • GONG Qi
Expand
  • 1. School of Transportation Science and Engineering, Beihang University, Beijing 100083, China;
    2. AVIC China Aero-PloyTechnology Establishment, Beijing 100028, China

Received date: 2014-12-23

  Revised date: 2015-07-04

  Online published: 2015-09-30

Supported by

National Level Project

摘要

针对航空发动机适航条款FAR33.75中关于发动机限寿件(ELLP)结构失效概率要求,提出了一种基于Kriging和蒙特卡罗半径外重要抽样(MCROIS)混合的结构概率风险评估方法。该方法针对ELLP高维、小失效概率事件以及极限状态函数为隐式、高度非线性的特点,利用Kriging元模型模拟隐式极限状态函数,然后通过主动学习迭代算法,计算最优点(MPP,最接近设计验算点的样本点),更新实验设计(DOE)并提高Kriging元模型的模拟精度。在此基础上,利用Kriging元模型确定最优抽样半径,构造半径外重要抽样密度函数,在最优抽样半径确定区域进行抽样,通过构造主动学习函数,使样本点更多落在抽样半径确定的球区域附近,加速失效概率计算的收敛,并构建了ELLP风险概率模型,解决了高维、小失效概率事件以及隐式、非线性极限状态函数的发动机结构概率风险评估难题,以某型发动机低压压气机轮盘为应用示例,与传统的蒙特卡罗仿真(MCS)方法进行了对比,验证了该方法的高效率、鲁棒性和仿真精度。

本文引用格式

李岩 , 张曙光 , 宫綦 . 一种改进的航空发动机结构概率风险评估方法[J]. 航空学报, 2016 , 37(2) : 597 -608 . DOI: 10.7527/S1000-6893.2015.0199

Abstract

In order to meet the probabilistic requirements of engine life limited parts(ELLP) for FAR33.75, an improved approach of probabilistic risk assessment combined with Kriging and Monte Carlo radius-outside importance sampling(MCROIS) is presented. Concerning the issue of high dimensions and low failure probabilities including implicit and highly nonlinear limit state function, Kriging model is used to approximate the unknown implicit limit state functions and calculate the most probable point(MPP) with iterative algorithm of active learning function; the accuracy of Kriging model is improved when design of experiments(DOE) is updated. Using Kriging model, optimal sampling radius is determined and the joint probability density function of importance sampling is constructed; meanwhile sampling center is moved to the area of optimal sampling radius, then active learning function is constructed to ensure that more random sample points are drawn belonging to the sphere domain which is determined by optimal sampling radius, and the efficiency of failure probability is improved, so the structural risk probabilistic model of ELLP is established and the given approach is to perform engine risk assessment involving the issue of high dimensions and low failure probabilities. Finally, the numerical example of lower pressure compressor disk of aeroengine demonstrates the efficiency, robustness and accuracy of the approach compared with Monte Carlo simulation(MCS) algorithm.

参考文献

[1] U.S. Department of Transportation, Federal Aviation Administration. Guidance material for aircraft engine life-limited parts requirements:Advisory Circular 33.70-1[R]. Washington, D.C.:FAA, 2009:30-50.
[2] VITTAL S, HAJELA P, JOSHI A. Review of approaches to gas turbine life management:AIAA-2004-4372[R]. Reston:AIAA, 2004:2-5.
[3] 王卫国. 轮盘低循环疲劳寿命预测模型和试验评估方法研究[D]. 南京:南京航空航天大学, 2006:25-53. WANG W G. Disc LCF life prediction models and experiment assessment methodologies[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2006:25-53(in Chinese).
[4] U.S. Department of Defense. Engine structural integrity program:MIL-HDBK-1783B[S]. Washington, D.C.:U.S. Department of Defense, 2002:13-18.
[5] 丁水汀, 张弓, 蔚夺魁, 等. 航空发动机适航概率风险评估方法研究综述[J]. 航空动力学报, 2011, 26(7):1142-1143. DING S T, ZHANG G, YU D K, et al. Review of probabilistic risk assessment on aero-engine airworthiness[J]. Journal of Aerospace Power, 2011, 26(7):1142-1143(in Chinese).
[6] MCCLUNG R C, LEVERANT G R, ENRIGHT M P. Turbine rotor material design-Phase Ⅱ:Grant 99-G-016[R]. Washington, D.C.:FAA, 2008:50-55.
[7] DENG J, GU D S, LI X B, et al. Structural reliability analysis for implicit performance functions using artificial neural network[J]. Structural Safety, 2005, 27(1):25-48.
[8] GOMES H M, AWRUCH A M. Comparison of response surface and neural network with other methods for structural reliability analysis[J]. Structural Safety, 2004, 26(1):49-67.
[9] GUPTA S, MANOHAR C S. An improved response surface method for the determination of failure probability and importance measure[J]. Structure Safety, 2004, 26(2):123-139.
[10] ZHU M H, ZHOU Z R. Composite fretting wear of aluminum alloy[J]. Key Engineering Materials, 2007, 353-358:868-873.
[11] GAVIN H P, YAU S C. High-order limit state functions in the response surface method for structural reliability analysis[J]. Structural Safety, 2008, 30(2):162-179.
[12] JIN C G, LI Q S, XIAO R C. A new artificial neural network-based response surface method for structural reliability analysis[J]. Probabilistic Engineering Mechanics, 2008, 23(1):51-63.
[13] GUAN X L, MELCHERS R E. Effect of response surface parameter variation on structural reliability estimates[J]. Structural & Safety, 2001, 23(4):429-438.
[14] KIM S H, NA S W. Response surface method using vector projected sampling points[J]. Structural & Safety, 1997, 19(1):3-19.
[15] GAVIN H P, YAU S C. High-order limit state functions in the response surface method for structural reliability analysis[J]. Structural & Safety, 2008, 30(2):162-179.
[16] KLEIJNEN J P C. Kriging metamodeling in simulation:A review[J]. European Journal of Operation Research, 2009, 192(3):707-716.
[17] KAPPAS J. Review of risk and reliability methods for aircraft gas turbine engines:DSTO-TR-1306[R]. Victoria, Australia:DSTO Aeronautical and Maritime Research Laboratory, 2002:20-30.
[18] MILLWATER H R, ENRIGHT M P, FITCH S H K. A convergent probabilistic technique for risk assessment of gas turbine disks subject to metallurgical defects:AIAA-2002-1382[R]. Reston:AIAA, 2002:1-3.
[19] WU Y T, ENRIGHT M P, MILLWATER H R. Probalistic methods for design assessment of reliability with inspection[J]. AIAA Journal, 2002, 40(5):937-946.
[20] U.S. Department of Transportation, Faderal Aviation Adminisrtation. Airworthiness standards:Aircraft engines:CFR 14 Part 33[S]. Washington, D.C.:FAA, 2009:10-30.
[21] KAYMAZ I. Application of Kriging method to structural reliability problems[J]. Structural Safety, 2005, 27(2):133-151.
[22] BICHON B J, ELDRED M S, SWILER L P, et al. Efficient global reliability analysis for nonlinear implicit performance functions[J]. AIAA Journal, 2008, 46(10):2459-2468.
[23] SAE International. Guidelines and methods for conducting the safety assessment process on civil airborne systems and equipment:ARP 4761[S]. New York:SAE International, 1996:20-30.
[24] 黄庆南, 张连祥. 航空发动机转子非包容顶层事件安全性分析与思考[J]. 航空动力学报, 2009, 35(2):6-9. HUNG Q N, ZHANG L X. Safety analysis and thought of uncontained top event for aero-engine rotor[J]. Journal of Aerospace Power, 2009, 35(2):6-9(in Chinese).
[25] 姚卫星. 结构疲劳寿命分析[M]. 北京:国防工业出版社, 2003:72-73. YAO W X. Fatigue life prediction of structures[M]. Beijing:National Defence Industry Press, 2003:72-73(in Chinese).
[26] 吴学仁. 飞机结构金属材料力学性能手册:静强度疲劳/耐久性[M]. 北京:航空工业出版社, 1997:30-35. WU X R. Handbook of mechanical prosperities of aircraft structural metals:Static strength/durability[M]. Beijing:Aviation Industry Press, 1997:30-35(in Chinese).

文章导航

/