航空机电作动器的混合整流全状态反馈控制
收稿日期: 2015-07-08
修回日期: 2015-09-07
网络出版日期: 2015-09-23
Full-state feedback control of a novel hybrid rectifier applied to aircraft electric actuator load
Received date: 2015-07-08
Revised date: 2015-09-07
Online published: 2015-09-23
研究了一种适用于多电飞机供电系统的新型混合整流电路,并针对航空机电作动器负载特殊的用电特性,提出了一种基于全状态反馈的混合整流控制方法,在保证整流效果的同时,解决了负载功率短时大范围变化引起的直流电压不稳定问题。这种新型混合整流电路将二极管整流电路和脉宽调制(PWM)整流电路并联输出接负载,两者共同承担有功功率且比例可控,通过适当控制PWM电路达到网侧低谐波的目的,且当负载制动时,能量可以回馈交流侧电网。建立了混合整流器的线性化全状态数学模型,设计了基于线性二次型(LQR)最优化理论的全状态反馈控制策略。通过在MATLAB/Simulink下的建模与仿真,比较了全状态反馈控制方法与传统三状态反馈控制方法,并在机电作动器样机上进行了实验验证。仿真和实验结果表明,采用全状态反馈控制的新型混合整流方案对于功率大范围变化负载具有更好的控制性能。
白龙 , 孙楚 , 周元钧 . 航空机电作动器的混合整流全状态反馈控制[J]. 航空学报, 2016 , 37(6) : 1940 -1952 . DOI: 10.7527/S1000-6893.2015.0249
A novel hybrid rectifier is presented which is applied to more electric aircraft power source and full-state feedback control is proposed according to the characteristics of aircraft electric actuator. The control aims to solve the problem of big output voltage dip caused by wide-range rapid varying load. The novel hybrid rectifier structured by a diode rectifier in parallel with a pulse width modulation (PWM) rectifier can limit harmonic current effectively, and the PWM part of the hybrid rectifier can bear the active power output whose proportion can be controlled properly and energy can be fed back to aviation source when load is braking. Linear mathematical model of the hybrid rectifier is then established and full-state feedback control based on linear quadratic regulator (LQR) is proposed. Comparison is made between full-state feedback control and three-state feedback control based on the results of MATLAB/Simulink simulation and prototype experiment, which verifies the improved performance of the hybrid rectifier applied to wide-range varying load.
[1] ROSERO J A, ORTEGA J A, ALDABAS E, et al. Moving towards a more electric aircraft[J]. IEEE Aerospace and Electronic Systems Magazine, 2007, 22(3):3-9.
[2] GARCIA A, CUISDO J, ROSERO J A, et al. Reliable electro-mechanical actuators in aircraft[J]. IEEE Aerospace and Electronic Systems Magazine, 2008, 23(8):19-25.
[3] 王娜, 周元钧. 基于负阻抗补偿法的调速系统阻抗特性分析[J]. 中国电机工程学报, 2013, 33(33):50-56. WANG N, ZHOU Y J. Impendance characteristics analysis of speed regulation system with negative input-resistance compensators[J]. Proceedings of the CSEE, 2013, 33(33):50-56(in Chinese).
[4] 吕宏, 袁海文, 张莉, 等. 基于模式重要度的航空电源系统可靠性估计[J]. 航空学报, 2010, 31(3):608-613. LU H, YUAN H W, ZHANG L, et al. Aircraft electrical power system reliability estimation based on pattern importance[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3):608-613(in Chinese).
[5] MARIO R, ATEPHEN J. Aircraft electrical system architectures to support more electric aircraft[C]//Avionic & Systems Conference, 2004:27-35.
[6] JOSEPH A, WEIMER J A. Electrical power technology for the more electric aircraft[C]//IEEE/AIAA 12th DASC. Reston:AIAA, 1993:445-450.
[7] ARRILLAGA J, MEDINA A. The harmonic domain:A frame of reference for power system harmonic analysis[J]. IEEE Transactions on Power Systems, 1995, 10(1):433-440.
[8] 陈坚. 电力电子学[M]. 北京:高等教育出版社, 2010:194-199. CHEN J. Power electronics[M]. Beijing:Higher Education Press, 2010:194-199(in Chinese).
[9] 张崇巍, 张兴. PWM整流器及其控制[M]. 北京:机械工业出版社, 2003:69-78. ZHANG C W, ZHANG X. PWM rectifier and its control method[M]. Beijing:China Machine Press, 2003:69-78(in Chinese).
[10] 张巍, 尚晓磊, 周元钧, 等. 一种适用于航空电力作动器负载的三相PWM整流器最大功率控制[J]. 电工技术学报, 2011, 26(8):91-98. ZHANG W, SHANG X L, ZHOU Y J, et al. A maximum power control method of three-phase voltage source rectifiers adapted to aircraft electric actuator load[J]. Transactions of China Electrotechnical Society, 2011, 26(8):91-98(in Chinese).
[11] 王兆安, 杨军, 刘进军, 等. 谐波抑制与无功功率补偿[M]. 北京:机械工业出版社, 2005:257-321. WANG Z A, YANG J, LIU J J, et al. Harmonic suppression and reactive power compensation[M]. Beijing:China Machine Press, 2005:257-321(in Chinese).
[12] 张方华, 王明, 马义林, 等. 输入电压不平衡时的12脉冲自耦变压整流器[J]. 航空学报, 2010, 31(4):762-769. ZHANG F H, WANG M, MA Y L, et al. 12-pulse auto transformer rectifier unit under input voltage unbalance[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(4):762-769(in Chinese).
[13] CARLOS H I F, IVO B. A new high power factor bidirectional hybrid three-phase rectifier[C]//IEEE Applied Power Electronics Conference and Exposition. Piscataway, NJ:IEEE Press, 2006:1300-1306.
[14] RICARDO L A, IVO B. Analysis and implementation of a hybrid high power factor three phase unidirectional rectifier[J]. IEEE Transactions on Power Electronics, 2009, 24(3):632-640.
[15] ZHANG W, HOU Y Z, LIU X B, et al. Switched control of three-phase voltage source PWM rectifier under a wide-range rapidly varying active load[J]. IEEE Transactions on Power Electronics, 2012, 27(2):881-890.
[16] 杨培志, 张晓华, 陈宏钧, 等. 三相电压型PWM整流器模型准线性化[J]. 电工技术学报, 2007, 22(8):28-36. YANG P Z, ZHANG X H, CHEN H J, et al. Study of model quasi-linearization of three-phase voltage-type PWM rectifiers[J]. Transactions of China Electrotechnical Society, 2007, 22(8):28-36(in Chinese).
[17] 郑大钟. 线性系统理论[M]. 北京:清华大学出版社, 2011:305-334. ZHENG D Z. Linear system theory[M]. Beijing:Tsinghua University Press, 2011:305-334(in Chinese).
[18] 张锋. 线性二次型最优控制问题的研究[D]. 天津:天津大学, 2009:9-15. ZHANG F. Research on the problem of linear quadratic optimal control[D]. Tianjin:Tianjin University, 2009:9-15(in Chinese).
[19] KHAJEHODDIN S A, GHARTEMAN M K, BAKHSHAI A, et al. High quality output current control for single phase grid-connected inverters[C]//IEEE Applied Power Electronics Conference and Exposition. Piscataway, NJ:IEEE Press, 2014:1807-1814.
[20] 王娜, 周元钧. 负阻抗补偿法在机电作动器上的研究与应用[J]. 电机与控制学报, 2014, 18(4):25-30. WANG N, ZHOU Y J. Research and application on the negative input-resistance compensator for aircraft electromechanical actuator[J]. Electric Machines and Control, 2014, 18(4):25-30(in Chinese).
[21] WEIMER J A. Electrical power technology for the more electric aircraft[C]//IEEE/AIAA 12th Digital Avionics Systems Conference. Piscataway, NJ:IEEE Press, 1993:445-450.
/
〈 | 〉 |