高超声速化学反应源项雅可比矩阵的对角化
收稿日期: 2015-05-26
修回日期: 2015-09-16
网络出版日期: 2015-09-23
Diagonalization on Jacobian matrix of source term for hypersonic chemical reactive flows
Received date: 2015-05-26
Revised date: 2015-09-16
Online published: 2015-09-23
基于Von Neumann稳定性理论,对高超声速化学反应流中源项雅可比(Jacobian)矩阵应用不同对角化方法的耦合隐式格式进行稳定性分析。详细推导出对角化方法情况下数值方法的增长因子,并分析不同对角化方法条件下的增长因子与CFL (Courant-Friedrichs-Lewy)数及波数之间的关系。理论分析与数值验证表明,Kim方法较Eberhardt和Ju方法更适合源项雅可比矩阵的对角化,保证数值求解在较大的CFL数条件下也能够实现稳定快速计算。另外,结合计算得到的刚性参数,稳定性分析结果还指出在高超声速化学反应外部流场中,激波与驻点之间的亚声速高温高压状态是导致数值格式计算不稳定的物理因素。
王羽 , 屈崑 , 蔡晋生 . 高超声速化学反应源项雅可比矩阵的对角化[J]. 航空学报, 2016 , 37(5) : 1419 -1427 . DOI: 10.7527/S1000-6893.2015.0258
The stability of a coupled implicit scheme, in which the Jacobian matrix of chemical source term is diagonalized by different methods, is mainly studied based on Von Neumann stability theory. The amplification factor of the present schemes, which use different diagonalized methods, is deduced in detail in paper, and its relations with the courant-Friedrichs-Lewy (CFL) number and the wave number are analyzed. The theoretical analyses and numerical validations show that, the Kim method is more suitable for diagonalizing the Jacobian matrix than the Eberhardt and Ju methods, so that the steadier and more efficient computation can also be achieved for larger CFL number. In addition, with the stiffness parameters obtained, the analyses still show that the computational instability mainly results from the high temperature and pressure with subsonic state between the shock and stagnation point in the outer flow field of hypersonic reactive flows.
Key words: diagonalization; stability analysis; LU-SGS; hypersonic; chemical reactive flow
[1] YOON S, JAMESON A. Lower-upper symmetric-Gauss-Sediel method for the Euler and Navier-Stoker equations[J]. AIAA Journal, 1988, 26(9):1025-1026.
[2] KANDULA M, BUNING P G. Implementation of LU-SGS algorithm and Roe upwinding scheme in OVERFLOW thin-layer Navier-Stokes code:AIAA-1994-2357[R]. Reston:AIAA, 1994.
[3] CHEN K H, DUNCAN B, FRICKER D, et al. ALLSPD-3D[CP]. Washington, D. C.:NASA Lewis Research Center, 1996.
[4] KIM S L, JEUNG I S, PARK Y H, et al. Approximate Jacobian methods for efficient calculation of reactive flows:AIAA-2000-3384[R]. Reston:AIAA, 2000.
[5] EBERHARDT S, IMLAY S. Diagonal implicit scheme for computing flows with finite rate chemistry[J]. Journal of Thermophysics and Heat Transfer, 1992, 6(2):208-216.
[6] JU Y. Lower-upper scheme for chemically reacting flow with finite rate chemistry[J]. AIAA Journal, 1995, 33(8):1418-1425.
[7] CHIANG T L, HOFFMANN K. Determination of computational time step for chemically reacting clows:AIAA-1989-1855[R]. Reston:AIAA, 1989.
[8] KIM S L, CHOI J Y, JEUNG I S, et al. Application of approximate chemical Jacobians for constant volume reaction and shock-induced combustion[J]. Applied Numerical Mathematics, 2001, 39:87-104.
[9] ANDERSON D A, TANNEHILL J C, PLETCHER R H. Computational fluid mechanics and heat transfer[M]. 3rd ed. New York:Hemisphere Publishing Corporation, 1994:82-89.
[10] 瞿章华. 高超声速空气动力学[M]. 长沙:国防科技大学出版社, 2001:182-186. QU Z H. Hypersonic aerodynamics[M]. Changsha:National University of Defence Technology Press, 2001:182-186(in Chinese).
[11] DUNN M G, KANG S W. Theoretical and experimental studies of reentry plasmas:NASA CR-2232[R]. Washington, D. C.:NASA, 1973.
[12] 阎超. 计算流体力学方法及应用[M]. 北京:北京航空航天大学出版社, 2006:148-151. YAN C. The method and application for computatinal fluid dynamics[M]. Beijing:Beihang University Press, 2006:148-151(in Chinese).
[13] BEAM R M, WARMING R F. An implicit finite difference algorithm for hyperbolic system in conservation law form[J]. Journal of Computational Physics, 1976, 22:87-109.
[14] ROE P L. Approximate riemann solvers, parameter vectors and difference schemes[J]. Journal of Computational Physics, 1981, 43:357-372.
[15] 蔡晋生, 李凤蔚, 罗时钧. 跨声速大迎角Euler方程数值分析[J]. 航空学报, 1993, 14(5):235-240. CAI J S, LI F W, LUO S J. A numerical solution of transonic Euler equation at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 1993, 14(5):235-240(in Chinese).
[16] RICHARD P D. Efficiency improvements of RANS-based analysis and optimization using implicit and adjoint methods on unstructured grids[D]. Manchester:University of Manchester, 2006:63-73.
[17] ANDERSON J D. Hypersonic and high temperature gas dynamics[M]. New York:McGraw-Hill Book Company, 1989:476-477.
[18] BUSSING T R, MURMAN E M. Finite volume method for the calculation of compressible chemically reacting flows[J]. AIAA Journal, 1988, 26(9):1070-1078.
[19] HASSAN B, CANDLER G V, OLYNICK D R. Thermo-chemical nonequilibrium effects on the aerothermodynamics of aerobraking vehicles[J]. Journal of Spacecraft and Rockets, 1993, 30(6):647-655.
[20] 李海燕. 高超声速高温气体流场的数值模拟[D]. 绵阳:中国空气动力研究与发展中心, 2007:63-64. LI H Y. Numerical simulation of hypersonic and high temperature gas flowfield[D]. Mianyang:China Aerodynamics Research and Development Center, 2007:63-64(in Chinese).
[21] 潘沙. 高超声速气动热数值模拟方法及大规模并行计算研究[D]. 长沙:国防科学技术大学, 2010:143. PAN S. Hypersonic aerothermal numerical simulation method and massive parallel computation research[D]. Changsha:National University of Defense Technology, 2010:143(in Chinese).
[22] MUYLAERT J, WALPOT L, HAUSER J, et al. Standard model testing in the European high enthalpy facility F4 and extrapolation to flight:AIAA-1992-3905[R]. Reston:AIAA, 1992.
/
〈 | 〉 |