流体力学与飞行力学

低雷诺数下层流分离的等离子体控制

  • 孟宣市 ,
  • 杨泽人 ,
  • 陈琦 ,
  • 白鹏 ,
  • 胡海洋
展开
  • 1. 西北工业大学 航空学院, 西安 710072;
    2. 上海飞机设计研究院, 上海 201210;
    3. 中国航天空气动力技术研究院, 北京 100074

收稿日期: 2015-07-13

  修回日期: 2015-09-02

  网络出版日期: 2015-09-16

基金资助

国家自然科学基金(51107101);国家级重点实验室基金(9140C420301110C42);西北工业大学基础研究基金(310201401JCQ01003)

Laminar separation control at low Reynolds numbers using plasma actuation

  • MENG Xuanshi ,
  • YANG Zeren ,
  • CHEN Qi ,
  • BAI Peng ,
  • HU Haiyang
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Shanghai Aircraft Design and Research Institute, Shanghai 201210, China;
    3. China Academy of Aerospace Aerodynamics, Beijing 100074, China

Received date: 2015-07-13

  Revised date: 2015-09-02

  Online published: 2015-09-16

Supported by

National Natural Science Foundation of China (51107101); National Key Laboratory Research Foundation of China (9140C420301110C42); NPU Foundation for Fundamental Research (310201401JCQ01003)

摘要

为有效控制层流分离特性,消除或减弱低雷诺数时小迎角下的升力非线性现象,改善翼型升力特性,并通过翼型的上表面转捩带与油流显示测量对等离子体激励控制机理进行阐述,对厚度为16%椭圆翼型低雷诺数下的气动特性进行了风洞试验研究。在此基础上,在上表面前缘10%弦长处布置激励器,通过压力分布测量观察等离子体激励对层流分离的影响。试验结果表明:当翼型上表面仅发生层流分离时,等离子体激励和转捩带的作用类似,可以有效延迟或者消除后缘层流分离,从而增加升力;当翼型上表面出现层流分离气泡并发生再附现象时,等离子体可以有效减小或者消除层流分离泡的范围,从而减小升力;通过控制层流分离,占空循环等离子体激励可以实现对低雷诺数小迎角下的升力的线性控制。

本文引用格式

孟宣市 , 杨泽人 , 陈琦 , 白鹏 , 胡海洋 . 低雷诺数下层流分离的等离子体控制[J]. 航空学报, 2016 , 37(7) : 2112 -2122 . DOI: 10.7527/S1000-6893.2015.0244

Abstract

In order to control the laminar separation effectively and eliminate or decrease the nonlinearities of the lift curve, the mechanism is detected using pressure measurements and surface oil visualization measurements on the tripped airfoil. An experimental study of an elliptic airfoil with 16% thickness is performed in wind tunnel. Based on the baseline airfoil aerodynamics, an alternating current single dielectric barrier discharge plasma actuator set at 10% chord is designed, combined with surface pressure distribution measurements. The results show that the plasma actuator would re-energize the boundary layer, thereby delay the trailing-edge laminar boundary layer separation and result in the enhancement of the lift like a trip strip. When the laminar separation bubble occurs at trailing or leading edge region of the airfoil, the plasma actuation can eliminate or decrease the bubble, thus leading to a reduction in the airfoil lift. The linear proportional control is achieved with the enhancement and reduction lift changes by duty-cycled plasma actuation.

参考文献

[1] MICHAEL S S, JAMES J G, ANDY P B, et al. Experiments on airfoils at low Reynolds numbers:AIAA-1996-0062[R]. Reston:AIAA, 1996.
[2] MUELLER T J. The influence of laminar separation and transition on low Reynolds number airfoil hysteresis:AIAA-1984-1617[R]. Reston:AIAA, 1984.
[3] 白鹏, 崔尔杰, 李锋, 等. 对称翼型低雷诺数小攻角升力系数非线性现象研究[J]. 力学学报, 2006, 38(1):1-8. BAI P, CUI E J, LI F, et al. Study of the nonlinear lift coefficient of the symmetrical airfoil at low Reynolds number near the zero angle of attack[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(1):1-8(in Chinese).
[4] 白鹏, 李锋, 詹慧玲, 等. 翼型低Re数小攻角非线性非定常层流分离现象研究[J]. 中国科学:物理学力学天文学, 2015, 45(2):024703-1-12. BAI P, LI F, ZHAN H L, et al. Study about the non-linear and unsteady laminar separation phenomena around the airfoil at low Reynolds number with low incidence[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2015, 45(2):024703-1-12(in Chinese).
[5] ELLSWORTH R H, MUELLER T J. Airfoil boundary layer measurements at low Re in an accelerating flow from a nonzero velocity[J]. Experiments in Fluids, 1991, 11(6):368-374.
[6] SELIG M S, GUGLIELMO J J, BROERN A P, et al. Experiments on airfoils at low Reynolds numbers:AIAA-1996-0062[R]. Reston:AIAA, 1996.
[7] MCGRANAHAN B D, SELIG M S. Surface oil flow measurements on several airfoils at low Reynolds numbers:AIAA-2003-4067[R]. Reston:AIAA, 2003.
[8] 叶建, 邹正平, 陆利蓬, 等. 低雷诺数下翼型前缘流动分离机制的研究[J]. 北京航空航天大学学报, 2004, 30(8):693-697. YE J, ZOU Z P, LU L P, et al. Investigation of separation mechanism for airfoil leading edge flow at low Reynolds number[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(8):693-697(in Chinese).
[9] 谢飞, 叶正寅. 低马赫数下的绕翼型非定常流动数值模拟[C]//第十二届全国计算流体力学会议论文集. 北京:中国力学学会, 2004. XIE F, YE Z Y. Numerical simulation of unsteady flow around an airfoil with low Mach number[C]//Proceedings of the 12th National Conference on Computation Fluid Dynamics. Beijing:Chinese Society of Theoretical and Applied Mechanics, 2004(in Chinese).
[10] 程钰锋, 李国强, 聂万胜. 低雷诺数下螺旋桨翼型非定常气动性能的比较[J]. 直升机技术, 2012(1):16-19. CHENG Y F, LI G Q, NIE W S. Comparison study of the propeller airfoil unsteady aerodynamic characteristics in low Reynolds number[J]. Helicopter Technique, 2012(1):16-19(in Chinese).
[11] 王铁城. 确定低雷诺数翼型转捩分离泡位置的实验研究[J]. 空气动力学学报, 1992(2):235-238. WANG T C. An experimental study on location of transitional separation bubble on a low Reynolds numbers airfoil[J]. Acta Aerodynamica Sinica, 1992(2):235-238(in Chinese).
[12] 吴鋆, 王晋军, 李天. NACA0012翼型低雷诺数绕流的实验研究[J]. 实验流体力学, 2013, 27(6):32-38. WU J, WANG J J, LI T. Experimental investigation on low Reynolds number behavior of NACA0012 airfoil[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(6):32-38(in Chinese).
[13] TRAUB L W. Experimental investigation of the effect of trip strips at low Reynolds number[J]. Journal of Aircraft, 2011, 48(5):1776-1784.
[14] 何飞, 宋文萍. 固定转捩在改善振荡来流下低雷诺数翼型气动性能中的应用[J]. 空气动力学学报, 2007, 25(4):495-499. HE F, SONG W P. Improving the aerodynamic performance of low Reynolds number airfoils in oscillating freestream with forced transition method[J]. Acta Aerodynamica Sinica, 2007, 25(4):495-499(in Chinese).
[15] 王庶, 米建春. 大湍流度对超低雷诺数下翼型受力及绕流的影响[J]. 航空学报, 2011, 32(1):41-48. WANG S, MI J C. Effect of large turbulence intensity on airfoil load and flow[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(1):41-48(in Chinese).
[16] ZAMAN K B M Q, MCKINZIE D J. Control of laminar separation over airfoils by acoustic excitation[J]. AIAA Journal, 1991, 29(7):1075-1083.
[17] NATHAN O P, THAKEJR M P, BONILLA C H, et al. Active control of flow separation on a laminar airfoil[J]. AIAA Journal, 2013, 51(5):1032-1041.
[18] 陈耀慧, 栗保明, 潘绪超, 等. 电磁力控制翼型绕流分离的增升减阻效率研究[J]. 力学学报, 2015, 47(3):414-421. CHEN Y H, LI B M, PAN X C, et al. Research of the control efficiency of lift increase and drag reduction base on flow around hydrofoil controlled by Lorentz force[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3):414-421(in Chinese).
[19] 张旺龙, 谭俊杰, 陈志华, 等. 抽吸控制对低雷诺数下翼型分离流动的影响[J]. 航空学报, 2014, 35(1):141-150. ZHANG W L, TAN J J, CHEN Z H, et al. Effect of suction control on separation flow around an airfoil at low Reynolds number[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):141-150(in Chinese).
[20] 刘沛清, 马利川, 屈秋林, 等. 低雷诺数下翼型层流分离泡及吹吸气控制数值研究[J]. 空气动力学学报, 2013, 31(4):518-524. LIU P Q, MA L C, QU Q L, et al. Numerical investigation of the laminar separation bubble control by blowing/suction on an airfoil at lowRe number[J]. Acta Aerodynamica Sinica, 2013, 31(4):518-524(in Chinese).
[21] 崔钊, 李建波, 赵洪. 翼型加装格尼襟翼的低雷诺数气动特性实验研究[J]. 实验流体力学, 2013, 27(4):1-6. CUI Z, LI J B, ZHAO H. Experimental study on aerodynamic characteristics of airfoil equipped with Gurney flaps at low Reynolds numbers[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(4):1-6(in Chinese).
[22] 李应红, 吴云, 梁华, 等. 提高抑制流动分离能力的等离子体冲击流动控制原理[J]. 科学通报, 2010, 55(31):3060-3068. LI Y H, WU Y, LIANG H, et al. The mechanism of plasma shock flow control for enhancing flow separation control capability[J]. Chinese Sci Bull (Chinese Ver), 2010, 55(31):3060-3068(in Chinese).
[23] 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2):381-405. WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):381-405(in Chinese).
[24] WANG J J, CHOI K, FENG L H, et al. Recent developments in DBD plasma flow control[J]. Progress in Aerospace Sciences, 2013, 62(4):52-78.
[25] CORKE T C, POST M L, DMITRIY M O. Single-dielectric barrier discharge plasma enhanced aerodynamics:Concepts, optimization, and applications[J]. Journal of Propulsion and Power, 2008, 24(5):935-945.
[26] LITTLE J, TAKASHIMA K, NISHIHARA M, et al. Separation control with nanosecond pulse driven dielectric barrier discharge plasma actuators[J]. AIAA Journal, 2012, 50(2):350-365.
[27] FENG L H, CHOI K S, WANG J J. Flow control over an airfoil using virtual Gurney flaps[J]. Journal of Fluid Mechanics, 2015, 767:595-626.
[28] FENG L H, JUKES T N, CHOI K S, et al. Flow control over a NACA 0012 airfoil using DBD plasma actuator with a Gurney flap[J]. Experiments in Fluids, 2012, 52(6):1533-1546.
[29] 冯立好, 王晋军, CHOI K S. 等离子体环量控制翼型增升的实验研究[J]. 力学学报, 2013, 45(6):815-821. FENG L H, WANG J J, CHOI K S. Experimental investigation on lift increment of a plasma circulation control airfoil[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6):815-821(in Chinese).
[30] KWON K, PARK S O. Aerodynamic characteristics of an elliptic airfoil at low Reynolds number[J]. Journal of Aircraft, 2005, 42(6):1642-1644.
[31] AHOLT J. Active flow control strategy of laminar separation bubbles developed over subsonic airfoils at low Reynolds numbers:AIAA-2011-0733[R]. Reston:AIAA, 2011.
[32] BRASLOW A L, KNOX E C. Simplified method for determination of critical height of distributed roughness particles for boundary-layer transition at Mach numbers from 0 to 5:NACA-4363[R].Washington, D. C.:NASA, 1958.
[33] LAMONT P J. Pressures around an inclined ogive cylinder with laminar, transitional, or turbulent separation[J]. AIAA Journal, 1982, 20(10):1492-1499.
[34] CORKE T C, HE C, PATEL M. Plasma flaps and slats:An application of weakly-ionized plasma actuators:AIAA-2004-2127[R]. Reston:AIAA, 2004.
[35] SEIFERT A, BACHAR T, MOSS D, et al. Oscillatory blowing:A tool to delay boundary-layer separation[J]. AIAA Journal, 1993, 11(31):2052-2060.
[36] ZHANG P F, WANG J J, FENG L H, et al. Experimental study of plasma flow control on highly swept delta wing[J]. AIAA Journal, 2010, 48(1):249-252.
[37] GREENBLATT D, KASTANTIN Y, NAYERI C N, et al. Delta-wing flow control using dielectric barrier discharge actuators[J]. AIAA Journal, 2008, 46(6):1554-1560.
[38] THOMAS F O, KOZLOV A, CORKE T C. Plasma actuators for cylinder flow control and noise reduction[J]. AIAA Journal, 2008, 45(8):1921-1931.
[39] MENG X S, WANG J L, CAI J S, et al. Optimal DBD duty cycle for conical forebody side-force proportional control:AIAA-2013-0347[R]. Reston:AIAA, 2013.

文章导航

/