流体力学与飞行力学

转捩模式与转捩准则预测高超声速边界层流动

  • 周玲 ,
  • 阎超 ,
  • 郝子辉 ,
  • 孔维萱 ,
  • 周禹
展开
  • 1. 北京航空航天大学航空科学与工程学院, 北京 100083;
    2. 北京航天长征飞行器研究所, 北京 100076;
    3. 空间物理重点实验室, 北京 100854
周玲,女,博士研究生。主要研究方向:计算流体力学,转捩模式,转捩准则。Tel:010-82317523 E-mail:zhouling@buaa.edu.cn;阎超,男,博士,教授,博士生导师。主要研究方向:空气动力学,计算流体力学。Tel:010-82317019 E-mail:yanchao@buaa.edu.cn

收稿日期: 2015-05-27

  修回日期: 2015-08-28

  网络出版日期: 2015-09-06

基金资助

国家"973"计划(2009CB72414)

Transition model and transition criteria for hypersonic boundary layer flow

  • ZHOU Ling ,
  • YAN Chao ,
  • HAO Zihui ,
  • KONG Weixuan ,
  • ZHOU Yu
Expand
  • 1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China;
    2. Beijing Institute of Space Long March Vehicle, Beijing 100076, China;
    3. Science and Technology on Space Physics Laboratory, Beijing 100854, China

Received date: 2015-05-27

  Revised date: 2015-08-28

  Online published: 2015-09-06

Supported by

National Basic Research Program of China (2009CB72414)

摘要

对原始的k-ω-γ转捩模式和"层流+转捩准则"模型进行了改进,在2种方法中分别增加了横流模态时间尺度和横流转捩准则用于预测横流失稳诱导转捩。通过对网格预处理可并行计算获得边界层外缘信息以及边界层内横流速度。采用不同雷诺数条件下的0°攻角尖锥以及HIFiRE-5外形对2种方法预测高超声速边界层转捩的性能进行了比较分析。研究结果表明,2种方法均能正确反映高超声速边界层转捩起始位置和转捩区长度随雷诺数的变化趋势,但不能捕捉转捩区热流峰值;"层流+转捩准则"模型计算得到的传热系数在全湍流区较k-ω-γ转捩模式偏高。对于同时存在流向不稳定和横流不稳定的HIFiRE-5外形,改进的k-ω-γ转捩模式和改进的"层流+转捩准则"模型相比于原始的模型均能更加准确地预测中心线两侧横流失稳诱导形成的转捩;对于中心线附近因速度剖面拐点引起的边界层转捩,"层流+转捩准则"模型由于与边界层厚度相关,预测得到的转捩位置较试验结果靠前,k-ω-γ转捩模式与试验结果吻合很好。

本文引用格式

周玲 , 阎超 , 郝子辉 , 孔维萱 , 周禹 . 转捩模式与转捩准则预测高超声速边界层流动[J]. 航空学报, 2016 , 37(4) : 1092 -1102 . DOI: 10.7527/S1000-6893.2015.0237

Abstract

This paper presents some modifications to the original k-ω-γ transition model and "laminar+transition criteria" model. The crossflow instability time scale and the crossflow criterion have been developed and added to the original k-ω-γ transition model and "laminar+transition criteria" model, respectively. With pretreatment of computational grid the boundary layer edge and crossflow velocity can be obtained using parallel methodology. Comparison of the two methods for hypersonic boundary layer transition prediction has been accomplished via sharp cone at different Reynolds numbers and HIFiRE-5 shape. Results have proven that both k-ω-γ transition model and "laminar+transition criteria" model can predict correct transition onsets and lengths at different Reynolds numbers, but fail to predict the heat overshoot observed in experimental results. The heat transfer in fully turbulent region predicted by "laminar+transition criteria" model is larger than k-ω-γ transition model and the reason for this has been analyzed. For HIFiRE-5 in which the boundary layer transition is dominated by streamwise instabilities and crossflow instabilities, the k-ω-γ transition model and "laminar+transition criteria" model with modifications show a better prediction for the crossflow induced transition than the models without modifications. However, for the transition dominated by the velocity profile inflection point, using "laminar+transition criteria" model which is associated with boundary layer thickness is inappropriate and can predict transition onset prematurely, while the k-ω-γ transition model presents good agreement with the test.

参考文献

[1] KRUMBEIN A. e<i>N transition prediction for 3D wing configurations using database methods and a local, linear stability code[J]. Aerospace Science and Technology, 2008, 12(8):592-598.
[2] 周恒. 高超声速边界层转捩和湍流计算问题[J]. 现代防御技术, 2014, 42(4):1-8. ZHOU H. Transition prediction and turbulence computation of hypersonic boundary layers[J]. Modern Defence Technology, 2014, 42(4):1-8(in Chinese).
[3] LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906.
[4] FU S, WANG L. RANS modeling of high-speed aerodynamic flow transition with consideration of stability theory[J]. Progress in Aerospace Sciences, 2012, 58:36-59.
[5] BERRY S A, KING R A, KEGERISE M A, et al. Orbiter boundary layer transition prediction tool enhancements:AIAA-2010-0246[R]. Reston:AIAA, 2010.
[6] LAU K Y. Hypersonic boundary-layer transition:Application to high-speed vehicle design[J]. Journal of Spacecraft and Rockets, 2008, 45(2):646-657.
[7] SIVASUBRAMANIAN J, FASEL H F. Direct numerical simulation of transition in a sharp cone boundary layer at Mach 6:Fundamental breakdown[J]. Journal of Fluid Mechanics, 2015, 768:175-218.
[8] MONOKROUSOS A, BRANDT L, SCHLATTER P, et al. DNS and LES of estimation and control of transition in boundary layers subject to free-stream turbulence[J]. International Journal of Heat and Fluid Flow, 2008, 29:841-855.
[9] WANG Y T, ZHANG Y L, LI S, et al. Calibration of a γ-Reθ transition model and its validation in low-speed flows with high-order numerical method[J]. Chinese Journal of Aeronautics, 2015, 28(3):704-711.
[10] ZHANG X D, GAO Z H. A numerical research on a compressibility-correlated Langtry's transition model for double wedge boundary layer flows[J]. Chinese Journal of Aeronautics, 2011, 24(3):249-257.
[11] WALTERS D K, COKLJAT D. A three-equation eddy-viscosity model for Reynolds-averaged Navier-Stokes simulations of transitional flow[J]. Journal of Fluids Engineering, 2008, 130(12):121401-1-14.
[12] WARREN E S, HASSAN H A. Transition closure model for predicting transition onset[J]. Journal of Aircraft, 1998, 35(5):769-775.
[13] WANG L, FU S. Development of an intermittency equation for the modeling of the supersonic/hypersonic boundary layer flow transition[J]. Flow, Turbulence and Combustion, 2011, 87(1):165-187.
[14] 孔维萱, 阎超, 赵瑞. 壁面温度条件对边界层转捩预测的影响[J]. 航空学报, 2013, 34(10):2249-2255. KONG W X, YAN C, ZHAO R. Effect of wall temperature on boundary layer transition prediction using transition model[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(10):2249-2255(in Chinese).
[15] 周玲, 阎超, 孔维萱. 高超声速飞行器前体边界层强制转捩数值模拟[J]. 航空学报, 2014, 35(6):1487-1495. ZHOU L, YAN C, KONG W X. Numerical simulation of forced boundary layer transition on hypersonic vehicle forebody[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6):1487-1495(in Chinese).
[16] 郝子辉, 阎超, 周玲. k-ω-γ模式对转捩影响因素的预测性能研究[J]. 力学学报, 2015, 47(2):215-222. HAO Z H, YAN C, ZHOU L. Parametric study of a k-ω-γ model in prediction hypersonic boundary-layer flow transition[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2):215-222(in Chinese).
[17] 孔维萱, 张辉, 阎超. 适用于高超声速边界层的转捩准则预测方法[J]. 导弹与航天运载技术, 2013(5):54-58. KONG W X, ZHANG H, YAN C. Transition criterion prediction method for hypersonic boundary layer[J]. Missiles and Space Vehicles, 2013(5):54-58(in Chinese).
[18] MACK L M. Linear stability theory and the problem of supersonic boundary-layer transition[J]. AIAA Journal, 1975, 13(3):278-289.
[19] REED H L, HAYNES T S. Transition correlations in three-dimensional boundary layers[J]. AIAA Journal, 1994, 32(5):923-929.
[20] DHAWAN S, NARASIMHA R. Some properties of boundary layer flow during the transition from laminar to turbulent motion[J]. Journal of Fluid Mechanics, 1958, 3(4):418-436.
[21] HORVATH T J, BERRY S A, HOLLIS B R, et al. Boundary layer transition on slender cones in conventional and low disturbance Mach 6 wind tunnels:AIAA-2002-2743[R]. Reston:AIAA, 2002.
[22] JULIANO T J, ADAMCZAK D, KIMMEL R L. HIFiRE-5 flight test heating analysis:AIAA-2014-0076[R]. Reston:AIAA, 2014.
[23] CHOUDHARI M, CHANG C L, JENTINK T, et al. Transition analysis for the HIFiRE-5 vehicle:AIAA-2009-4056[R]. Reston:AIAA, 2009.

文章导航

/