流体力学与飞行力学

自适应飞机驾驶员最优控制模型研究及应用

  • 刘嘉 ,
  • 向锦武 ,
  • 张颖 ,
  • 孙阳 ,
  • 肖楚琬
展开
  • 1. 海军航空工程学院, 烟台 264001;
    2. 北京航空航天大学航空科学与工程学院, 北京 100083
刘嘉,男,博士研究生,讲师。主要研究方向:飞行器设计。Tel:0535-5357357 E-mail:hjhy_lj@163.com;向锦武,男,博士,教授,博士生导师。主要研究方向:飞行器设计、结构动力学和气动弹性等。Tel:010-82338786 E-mail:xiangjw@buaa.edu.cn

收稿日期: 2015-05-07

  修回日期: 2015-08-02

  网络出版日期: 2015-08-31

基金资助

国家自然科学基金(51505493,91116019);国家"973"计划(2011CB707002)

Research and application of adaptive optimal control pilot model

  • LIU Jia ,
  • XIANG Jinwu ,
  • ZHANG Ying ,
  • SUN Yang ,
  • XIAO Chuwan
Expand
  • 1. Naval Aeronautical and Astronautical University, Yantai 264001, China;
    2. School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China

Received date: 2015-05-07

  Revised date: 2015-08-02

  Online published: 2015-08-31

Supported by

National Natural Science Foundation of China (51505493,91116019);National Basic Research Program of China (2011CB707002)

摘要

针对驾驶员最优控制模型(OCM)无法反映飞行员在未知环境下渐进适应过程这一缺点,采用自适应状态估计理论对OCM进行改进,建立了基于自适应状态估计的驾驶员最优控制模型(MOCM-AE),给出了算法流程。通过对比飞行试验数据和未知扰动下的着舰应用,对模型进行了评估。通过人机闭环仿真进行了飞行试验再现,得到了人机闭环频域曲线。对比结果表明,与OCM相比MOCM-AE的频域特性曲线与试验更为吻合。在着舰应用中,引入低空紊流作为未知扰动进行着舰仿真,结果表明OCM强烈依赖于先验经验,而MOCM-AE无论是否具有先验经验,无论是否存在未知扰动,均能取得良好着舰效果。在未知扰动和舰尾流影响下,MOCM-AE比传统OCM着舰精度提高59%,着舰点分布范围缩小29%,这体现了飞行员对未知环境的适应能力。

本文引用格式

刘嘉 , 向锦武 , 张颖 , 孙阳 , 肖楚琬 . 自适应飞机驾驶员最优控制模型研究及应用[J]. 航空学报, 2016 , 37(4) : 1127 -1138 . DOI: 10.7527/S1000-6893.2015.0222

Abstract

The traditional optimal control pilot model (OCM) is based on Kalman filter which cannot reveal the pilot behavior in time varying disturbance of unknown environment. To overcome the omissions of OCM, a Modified optimal control pilot model based on adaptive state estimate (MOCM-AE) is developed, and the algorithm implementation is given. By magnitude and phase comparison in frequency domain, the MOCM-AE is testified through flight test reproduction. And the MOCM-AE is more identical to the measurements than OCM. In carrier landing application, the OCM depends on the priori experience grievously, and the MOCM-AE shakes off the fetters of the prior knowledge. In unknown low altitude disturbance, it improves the landing accuracy by 59% and reduces the touchdown point dispersion scope by 29%. The advantage are shown in the model evaluation and MOCM-AE is more proper to describe the pilot behavior in unknown environment.

参考文献

[1] TULCIO S D, RICHARD J W. Factors influencing glide path control in carrier landing[J]. Journal of Aircraft, 1967, 4(2):146-158.
[2] 王新华, 杨一栋, 朱华. 低动压着舰状态下飞机的操纵特性研究[J]. 飞行力学, 2007, 25(4):29-36. WANG X H, YANG Y D, ZHU H. Research of handling characteristics of aircraft in low dynamic pressure situation[J]. Flight Dynamics, 2007, 25(4):29-36(in Chinese).
[3] 董庚寿, 张俊, 周佳, 等. GJB3719-99舰载飞机规范飞行品质[S]. 北京:中国人民解放军总装备部, 2000. DONG G S, ZHANG J, ZHOU J, et al. GJB3719-99 Ship-based airplane specification flying qualities[S]. Beijing:PLA General Armament Department, 2000(in Chinese).
[4] van KAMPEN E, ZAAL P M T, de WEERDT E, et al. Optimization of human perception modeling using interval analysis[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1):42-52.
[5] NIEUWENHUIZEN F M, MULDER M, van PAASSEN M M, et al. Influences of simulator motion system characteristics on pilot control behavior[J] Journal of Guidance, Control, and Dynamics, 2013, 36(3):667-676.
[6] ZAAL P M T, POOL D M, MULDER M, et al. Identification of multimodal pilot control behavior in real flight[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(5):1527-1538.
[7] 谭文倩, A. V. Efremov, 屈香菊. 俯仰跟踪任务中的驾驶员神经网络模型辨识[J]. 航空学报, 2010, 31(9):1708-1714. TAN W Q, EFREMOV A V,QU X J. Identification of pilot neural network model in pitch tracking[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(9):1708-1714(in Chinese).
[8] YANG C P, YIN T W, ZHAO W N, et al. Human factors quantification via boundary identification of flight performance margin[J]. Chinese Journal of Aeronautics, 2014, 27(4):977-985.
[9] MORI R, SUZUKI S. Neural network modeling of lateral pilot landing control[J]. Journal of Aircraft, 2009, 46(5):1721-1726.
[10] 程建锋, 董新民, 薛建平, 等. 飞机-驾驶员闭环系统模糊预见控制器设计[J]. 航空学报, 2014, 35(3):807-820. CHENG J F, DONG X M, XUE J P, et al. Fuzzy preview controller design for aircraft-pilot closed loop system[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):807-820(in Chinese).
[11] 谭文倩, A. V. Efremov, 屈香菊. 一种预测驾驶员操纵行为的建模方法[J]. 北京航空航天大学学报, 2010, 36(10):1140-1144. TAN W Q, EFREMOV A V, QU X J. Approach of pilot modeling for predicting pilot control behavior[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(10):1140-1144(in Chinese).
[12] 屈香菊. 驾驶员控制模型的建模研究[D]. 北京:北京航空航天大学, 2003. QU X J. Study on modeilng human pilot control[D]. Beijing:Beijing University of Aeronautics and Astronautics, 2003(in Chinese).
[13] KLEINMAN D L, BARON S, LEVISON W H. An optimal control model of human response, Part I & Ⅱ[J]. Automatica, 1970, 6(3):357-383.
[14] EDKINS C R. The prediction of pilot opinion ratings using optimal and sub-optimal pilot models[D]. Ohio:Department of the Air Force Air University, Air Force Institute of Technology, 1994.
[15] 薛红军, 巫火根, 张晓燕, 等. 驾驶员最优控制模型的应用研究[J]. 飞行力学, 2014, 32(4):294-297. XUE H J, WU H G, ZHANG X Y, et al. Application and research of the pilot optimal control model[J]. Flight Dynamics, 2014, 32(4):294-297(in Chinese).
[16] EDKINS C R. Human pilot response during single and multi-axis tracking tasks:AFFTC-TLR-93-41[R]. California:Air Force Flight Test Center, 1993.
[17] DAVIDSON J B, SCHMIDT D K. Modified optimal control pilot model for computer-aided design and analysis:NASA-TM-4384[R]. Washington, D.C.:NASA, 1992.
[18] RAN C J, DENG Z L. Self-tuning weighted measurement fusion Kalman filtering algorithm[J]. Computational Statistics and Data Analysis, 2012, 56:2112-2128.
[19] NELSON R C. 飞行稳定性和自动控制[M]. 第2版. 顾均晓, 译. 北京, 国防工业出版社, 2008:435-444. NELSON R C. Flight stability and automatic control[M]. 2nd ed. GU J X, translated. Beijing:National Defense and Industry Press, 2008:435-444(in Chinese).
[20] CHALK C R, NEAL T P, HARRIS T M, 等. 军用规范——有人驾驶飞机的飞行品质MIL-F-8785B(ASG)的背景资料和使用指南[M]. 北京:628研究所, 1977:32. CCALK C R, NEAL T P, HARRIS T M, et al. Background information and user guide for MIL-F-8785B (ASG), "Military Specification Flying Qualities of Piloted Airplanes"[M]. Beijing:628 Research Institute, 1977:32(in Chinese).
[21] MOORHOUSE D J, WOODCOCK R J. Background information and user guide for MiL-F-8785-C, Military Specification Flying Qualities of Piloted Airplanes:AFWAL-TR-81-3209[R]. Ohio:Air Force Wright Aeronautical Laboratories, 1981.

文章导航

/