合成射流微扰动对后台阶湍流分离流动控制的实验研究
收稿日期: 2015-01-30
修回日期: 2015-07-01
网络出版日期: 2015-08-31
基金资助
空气动力学国家重点实验室基金(JBKY14010201)
Experiment research of active flow control of turbulent separated flow on backward-facing step using synthetic jet perturbation
Received date: 2015-01-30
Revised date: 2015-07-01
Online published: 2015-08-31
Supported by
State Key Laboratory Fund of Aerodynamics(JBKY14010201)
后台阶流动是流体力学中一个经典的研究课题,代表着工程中一类横截面突扩的钝体绕流问题。后台阶流动分离会导致一些不利的影响,如高速旋涡的形成、流动损失、压力脉动以及气动噪声等。基于阵列式合成射流激励器对二维矩形后台阶湍流分离再附流动控制进行了研究,综合应用表面测压、七孔探针、粒子图像测速仪(PIV)和热线等多种实验手段,获取了后台阶的表面压力分布和非定常流场结构。结果表明:利用在台阶前缘形成的合成射流微扰动可使无量纲再附点长度降低25%,合成射流控制使得沿台阶下游的湍动能和雷诺应力增强,提高了台阶下游流场的混合效率。热线结果表明,频率是后台阶分离流动控制的重要参数,当频率为260 Hz,扰动频率与剪切层涡脱落频率之比为1.32时,合成射流控制可使位于1/2倍频的剪切层能量增强,仅需消耗较小的能量即可实现流动控制的目的。
李斌斌 , 姚勇 , 姜裕标 , 黄勇 , 顾蕴松 , 程克明 . 合成射流微扰动对后台阶湍流分离流动控制的实验研究[J]. 航空学报, 2016 , 37(2) : 545 -554 . DOI: 10.7527/S1000-6893.2015.0192
Backward-facing step flow is typical in the research of fluid mechanics and it mainly investigates the sudden expansion of cross-sectional flow around a bluff body. Backward-facing step flow separation will lead to some adverse effects, such as high-speed vortex formation, flow losses, pressure pulsation and aerodynamic noise. Experimental investigation on separated reattachment flow control of two-dimensional backward-facing step turbulence with synthetic jet arrays is conducted. The unsteady flow field structure of a backward-facing step and surface pressure distribution are measured with seven-hole probes particle image velocimetry(PIV), hot wire anemometer, and pressure transducers as well. The results show that the perturbation of synthetic jet which is formed at the upper edge of the step can effectively decrease the non-dimensional length of reattachment flow by about 25% at most, and synthetic jet control increases the turbulent kinetic energy and Reynolds stress along the downstream steps and enhances the mixing efficiency of the flow field. The hot wire results show that frequency is a key parameter of backward facing step flow separation control; when the disturbance frequency is 260 Hz, the ratio of disturbance frequency to shear layer vortex shedding frequency is 1.32,the synthetic jet control can be applied to enhancing the energy of separated shear layer at a half of disturbance frequency and the flow control can be achieved only with low consumption of energy.
[1] EATON J K, JOHNSTON J P. A review of research on subsonic turbulent flow reattachment[J]. AIAA Journal, 1981, 19(9):1093-1099.
[2] NEUMANN J, WENGLE H. DNS and LES of passively controlled turbulent backward facing step flow[J]. Turbulence and Combustion, 2003, 71(1):297-310.
[3] URUBA V, JONAS P, MAZUR O. Control of a channel flow behind a backward facing step by suction/blowing[J]. International Journal of Heat and Fluid Flow, 2007, 28(4):665-672.
[4] 兰世隆, 王晋军. 后向台阶层流边界层特性研究[J]. 北京航空航天大学学报,1996, 22(5):581-584. LAN S L, WANG J J. The characteristics of separated shear layer a backward facing step lamnar flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 1996, 22(5):581-584(in Chinese).
[5] 刘应征, 朴英守, 成亨镇. 后台阶分离再附湍流流动的试验研究[J]. 上海交通大学学报, 2005, 39(5):810-812, 817. LIU Y Z, PARK Y S, SUNG H J. Experimental investigation on the turbulent separated and reattaching flow over backward facing step[J]. Journal of Shanghai Jiaotong University, 2005, 39(5):810-812, 817(in Chinese).
[6] ARMALY B F, DURST F, PEREIRA J C F, et al. Expreimental and theoretical investigation of backward facing step flow[J]. Journal of Fluid Mechanics, 1983, 127(1):473-496.
[7] MORIOKA T, HONAMI S. A control system of backward facing step flow by vortex generator jets:AIAA-2001-3029[R]. Reston:AIAA, 2001.
[8] HEENAN A F, MORRISON J F. Passive control of pressure fluctuations generated by separated flows[J]. AIAA Journal, 1998, 36(6):1014-1022.
[9] PARK H, JEON W P, CHOI H, et al. Mixing enhancement behind a backward facing step using tabs[J]. Physics of Fluids, 2007, 19(10):103-105.
[10] 陈国定, 明晓. 后台阶流动控制[C]//第十四届研究生学术会议论文集. 南京:南京航空航天大学, 2012:85-92. CHEN G D, MING X. Research on the backward facing step flow control[C]//The 14th Graduate Academic Conference Proceedings. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012:85-92(in Chinese).
[11] SANO M, FUKAZAWA K, SAKURABA K. Control of turbulent channel flow over a backward facing step by suction or injection[J]. Heat Transfer-Asian Research, 2004, 33(8):490-504.
[12] 郑朝荣, 张耀春, 张建胜, 等. 均匀吸气控制下后台阶流动的数值模拟[J]. 哈尔滨工业大学学报, 2012, 44(4):23-27. ZHENG C R, ZHANG Y C, ZHANG J S, et al. Numerical simulation of a backward facing step flow controlled by steady suction[J]. Journal of Harbin Institute of Technology, 2012, 44(4):23-27(in Chinese).
[13] DEJOAN A, LESCHZINER M A. Large eddy simulation of periodically perturbed separated flow over a backward facing step[J]. International Journal of Heat and Fluid Flow, 2004, 25(4):581-592.
[14] CHUN K B, SUNG H J. Control of turbulent separated flow over a backward facing step by local forcing[J]. Experiments in Fluids, 1996, 21(6):417-426.
[15] BREDERODE V, BRADSHAW P. Influence of the side walls on the turbulent center plane boundary layer in a square duct[J]. Journal of Fluids Engineering, 1978, 100(3):91-96.
[16] BRADSHAW P, WONG F Y F. The reattachment and relaxation of turbulent shear layer[J]. Journal of Fluid Mechanics, 1972, 52(1):113-135.
/
〈 | 〉 |