一种基于最小二乘拟合的数据关联算法
收稿日期: 2015-06-08
修回日期: 2015-07-22
网络出版日期: 2015-08-18
基金资助
飞行器测控与通信教育部重点实验室开放基金(CTTC-FX201302)
Data association algorithm based on least square fitting
Received date: 2015-06-08
Revised date: 2015-07-22
Online published: 2015-08-18
Supported by
Open Foundation for Key Lab. for Spacecraft TT & C and Communication under the Ministry of Education (CTTC-FX201302)
针对点航关联在多目标跟踪中精度与实时性难兼顾的问题,提出了一种基于最小二乘拟合的点航关联算法。首先采用滑窗将历史航迹截断,采用最小二乘法在不同维度分别拟合、外推融合航迹历史信息条件下的航迹点,增加外推点的多样性及信息量。同时定义了5种全概率关联事件,提取传统滤波方法的预测点,将拟合外推点与滤波预测点融合,使归属判决更加准确。最后分别推导了不同事件发生时的状态更新方程与误差协方差更新方程,给出了其中参数的确定方法。经仿真数据验证,与经典的最近邻域法和联合概率数据互联算法相比,所提算法能够更好地兼顾精度与实时性,且计算复杂度较低,易于工程实现。
王聪 , 王海鹏 , 熊伟 , 何友 . 一种基于最小二乘拟合的数据关联算法[J]. 航空学报, 2016 , 37(5) : 1603 -1613 . DOI: 10.7527/S1000-6893.2015.0209
Focusing on the hard problem of the balance between accuracy and real-time performance in multiple target tracking, a data association algorithm based on least square fitting method is proposed in this paper. Firstly, the tracking in sliding window is used to predict the next state by least square fitting respectively in different dimensions, which brings more history information to the attribution judgment. Then, cooperating with the prediction point of filter update, the next real position is judged by five defined probability events, which make the judgment of association more accurate. Finally, the state update equations and covariance are deduced in different events and the method to determine the parameters is given. The simulation results show that compared with the nearest neighbor algorithm and joint probabilistic data association algorithm, the proposed algorithm can be better in the balance of real-time and accuracy with low computational complexity, which is easy to implement in engineering practice.
Key words: least square; data association; target tracking; curve-fitting; information fusion
[1] SINGER R A, STEIN J J. An optimal tracking filter for processing sensor data of imprecisely determined origin in surveillance systems[C]//Proceedings of the IEEE Conference on Decision and Control. Piscataway, NJ:IEEE Press, 1971:171-175.
[2] SINGER R A, SEA R G. A new filter for optimal tracking in dense multitarget environments[C]//Proceedings of the 9th Allerton Conference Circuit and system Theory, 1971:201-211.
[3] YAAKOV B S, EDISON T. Tracking in a cluttered environment with probabilistic data association[J]. Automatic, 1975, 11(5):451-460.
[4] FORTMANN T E, YAAKOV B S, SCHEFFE M. Sonar tracking of multiple targets using joint probabilistic data association[J]. IEEE Journal of Oceanic Engineering, 1983, 8(3):173-184.
[5] PURANIK S, TUGNAIT J K. Tracking of multiple maneuvering targets using multiscan JPDA and IMM filtering[J]. IEEE Transactions on Aerospace and Electronic System, 2007, 43(1):23-35.
[6] ATTARI M, DADSDEN S A, HABIBI S R. A multi-target tracking formulation of SVSF with the joint probabilistic data association technique[C]//ASME 2014 Dynamic Systems and Control Conference, 2014:23-29.
[7] YUAN C, FAN W, WANG J. Tracking for group targets using MHT[J]. Journal of Computational Information Systems, 2014, 10(18):8117-8126.
[8] BLACKMAN S S. Multiple hypothesis tracking for multiple target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 19(1):5-18.
[9] 张文, 冯道旺, 姜文利. 基于JPDA的单站多目标无源定位[J]. 航天电子对抗, 2011, 27(4):47-51. ZHANG W, FENG D W, JIANG W L. Multi-target passive localization of single observer based on JPDA[J]. Aerospace Electronic Warfare, 2011, 27(4):47-51(in Chinese).
[10] JIANG F. Cooperative multi-target tracking in passive sensor-based networks[C]//Proceedings of IEEE Wireless Communications and Networking Conference. Piscataway, NJ:IEEE Press, 2013:4340-4345.
[11] 郭阳明, 秦卫华, 姜红梅, 等. 基于数据关联的故障快速检测[J]. 航空学报, 2008, 29(4):1027-1030. GUO Y M, QIN W H, JIANG H M, et al. Fast fault detection based data association[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4):1027-1030(in Chinese).
[12] LONG Y L, XU H, AN W, et al. Track-before-detect for infrared maneuvering dim multi-target via MM-PHD[J]. Chinese Journal of Aeronautics, 2012, 25(2):252-261.
[13] WANG G H, TAN S C, GUAN C B, et al. Multiple model particle filter track-before-detect for range ambiguous radar[J]. Chinese Journal of Aeronautics, 2013, 26(6):1477-1487.
[14] OU Y C, JI H B. Weight over-estimation problem in GMP-PHD filter[J]. Electronics Letters, 2011, 47(2):139-141.
[15] MICHELE P, PIERRE D M. Mean-field PHD filters based on generalized Feynman-Kac flow[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3):484-495.
[16] GRANS K, ORG U. A PHD filter for tracking multiple extended targets using random matrices[J]. IEEE Transactions on Signal Processing, 2012, 60(11):5657-5671.
[17] KIASI F. An interpolative fuzzy inference using least square principle by means of β2 function and high order polynomials[C]//Proceedings of the IEEE International Conference on Mechatronics & Automation Niagara Falls. Piscataway, NJ:IEEE Press, 2005:829-836.
[18] 何友, 修建娟, 张晶炜, 等. 雷达数据处理及应用[M]. 第2版. 北京:电子工业出版社, 2009:120-122. HE Y, XIU J J, ZHANG J W, et al. Radar data processing with applications[M]. 2nd ed. Beijing:Publishing House of Electronics Industry, 2009:120-122(in Chinese).
[19] 李姣. 无线传感器网络中多目标跟踪的数据关联算法研究[D]. 武汉:华中科技大学, 2009:17-18. LI J. Research on data association algorithm of multi-target tracking in wireless sensor network[D]. Wuhan:Huazhong University of Science and Technology, 2009:17-18(in Chinese).
[20] 王国宏, 李俊杰, 张翔宇, 等. 邻近空间高超声速滑跃式机动目标的跟踪模型[J]. 航空学报, 2015, 36(7):2400-2410. WANG G H, LI J J, ZHANG X Y, et al. A tracking model for the near space hypersonic slippage leap maneuvering target[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7):2400-2410(in Chinese).
/
〈 | 〉 |