方案设计与多学科分析

机翼结构重量预测的多学科分析优化方法

  • 余雄庆 ,
  • 欧阳星 ,
  • 邢宇 ,
  • 王宇
展开
  • 南京航空航天大学航空宇航学院, 南京 210016
余雄庆 男,博士,教授,博士生导师。主要研究方向:飞行器总体设计,飞行器多学科设计优化。Tel:025-84892102,E-mail:yxq@nuaa.edu.cn;欧阳星 男,博士研究生。主要研究方向:飞行器多学科设计优化。E-mail:ouyangxing@nuaa.edu.cn;邢宇 男,博士研究生。主要研究方向:飞行器多学科设计优化。E-mail:xingyuaircraft@163.com;王宇 女,博士,讲师。主要研究方向:飞行器总体设计,飞行器多学科设计优化。E-mail:wangyu@nuaa.edu.cn

收稿日期: 2015-05-11

  修回日期: 2015-07-18

  网络出版日期: 2015-08-18

基金资助

国家自然科学基金(11432007);江苏省高校优势学科建设工程资助项目

Weight prediction method of wing-structure using multidisciplinary analysis and optimization

  • YU Xiongqing ,
  • OUYANG Xing ,
  • XING Yu ,
  • WANG Yu
Expand
  • College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2015-05-11

  Revised date: 2015-07-18

  Online published: 2015-08-18

Supported by

National Natural Science Foundation of China(11432007);Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions

摘要

为了克服现有机翼结构重量计算方法的局限性,提出一种基于多学科分析优化的机翼结构重量计算方法。以客机机翼为例,阐述整个计算流程。计算流程的关键步骤包括机翼外形和结构参数化建模、气动分析模型自动生成与外形优化、结构有限元模型的自动生成和结构优化。应用CAD软件CATIA的二次开发方法,实现机翼外形几何模型、结构布置几何模型和气动分析模型的自动生成;应用MSC.Patran的PCL编程技术,实现结构有限元模型的自动生成;应用等效刚度和等效强度方法,提高结构有限元模型自动生成的稳健性,缩短结构分析和优化的计算时间;应用多学科集成和优化技术,建立机翼结构重量预测的计算平台,实现整个计算过程的自动化。算例表明这种方法稳健、有效,可快速地分析机翼外形参数与结构重量之间的关系,分析不同展向载荷分布和不同选材方案对机翼结构重量的影响。

本文引用格式

余雄庆 , 欧阳星 , 邢宇 , 王宇 . 机翼结构重量预测的多学科分析优化方法[J]. 航空学报, 2016 , 37(1) : 235 -243 . DOI: 10.7527/S1000-6893.2015.0205

Abstract

A wing-structure weight prediction method using multidisciplinary analysis and optimization is proposed to overcome the limitations of the current predictions of wing-structure weight.The wing of a short/medium haul transport was used as an example to illustrate the procedure of the method.The key steps of the method include parametric modeling for wing configuration and structural layout,automatic generation of wing aerodynamic model,aerodynamic optimization,automatic generation of the wing structural finite element model and wing structural optimization.The parametric modeling for the wing configuration and structural layout,and automatic generation of aerodynamic model was implemented by running VB codes in CATIA.The automatic generation of wing structural finite element model was implemented by running MSC.Patran Command Language(PCL) codes.The equivalent stiffness and strength method was used to enhance the robustness of the finite element model generation of the wing structure and reduce the computational burden of the structural analysis and optimization.A computational framework for the wing-structure weight prediction was established using multidisciplinary integration and optimization,and the overall process for the wing-structure weight computation was carried out automatically.The example indicates that the method is robust and efficient,and is able to rapidly obtain the impacts of wing configurations,spanwise load distributions and structural materials on the wing-structure weights.

参考文献

[1] HOWE D.The prediction of aircraft wing mass[J].Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,1996,210(2):135-145.
[2] KELM R,LÄPPLE M,GRABIETZ M.Wing primary structure weight estimation of transport aircrafts in the pre-development phase,SAWE Paper No.2283[R].La Mesa,California:SAWE,1995.
[3] ARDERMA M D,CHANBERS M C,PATRON A P.Analytical fuselage and wing weight estimation of transport aircraft,NASA-TM-110392 [R].Washington D.C.:NASA,1996.
[4] AJAJ R M,SMITH D,ISIKVEREN A T,et al.A conceptual wing-box weight estimation model for transport aircraft[J].Aeronautical Journal,2013,117(1191):533-551.
[5] ELHAM A,VAN TOOREN M J L.Effect of wing-box structure on the optimum wing outer shape[J].Aeronautical Journal,2013,118(1199):1-30.
[6] GILES G L.Equivalent plate modeling for conceptual design of aircraft wing structures:NASA TM 111263 [R].Washington D.C.:NASA,1995.
[7] OLTMANN K M.Virtual engineering models for aircraft structure weight estimation,SAWE Paper No.2283 [R].La Mesa,California:SAWE,2007.
[8] WENZEL J,SINAPIUS M,GABBERT U.Primary structure mass estimation in early phases of aircraft development using the finite element method[J].CEAS Aeronautical Journal,2012,3(1):35-44.
[9] JEMITOLA P O,MONTERZINO G,FIELDING J.Wing mass estimation algorithm for medium range box wing aircraft[J].Aeronautical Journal,2013,117(1189):329-340.
[10] 余雄庆.飞机总体多学科设计优化的现状与发展方向[J].南京航空航天大学学报,2008,40(4):417-426.YU X Q.Multidisciplinary design optimization for aircraft conceptual and preliminary design:status and directions[J].Journal of Nanjing University of Aeronautics & Astronautics,2008,40(4):417-426(in Chinese).
[11] 张帅,余雄庆.中短程客机总体参数敏感性分析[J].航空学报,2013,34(4):809-816.ZHANG S,YU X Q.Sensitivity analysis of primary parameters in preliminary design of a short/medium-haul airliner[J].Acta Aeronautica et Astronautica Sinica,2013,34(4):809-816(in Chinese).
[12] KULFAN B M.A universal parametric geometry representation method-CST:AIAA-2007-0062 [R].Reston:AIAA,2007.
[13] 巨龙,白俊强,孙智伟,等.客机机翼环量分布的气动/结构一体化设计[J].航空学报,2013,34(12):2725-2732.JU L,BAI J Q,SUN Z W,et al.Integrated aero-structure design of circulation distribution for commercial aircraft wing[J].Acta Aeronautica et Astronautica Sinica,2013,34(12):2725-2732(in Chinese).
[14] SCHRENK O.A simple approximate method for obtaining the spanwise lift distribution,NACA TM948[R].Washington D.C.:NACA,1940.
[15] DEYOUNG J,HARPER C W.Theoretical symmetric span loading at subsonic speeds for wings having arbitrary plan form:NACA R921[R].Washington D.C.:NACA,1948.
[16] TORENBEEK E.Advanced aircraft design[M].Chichester,UK:John Wiley & Sons,Ltd.,2013:298-361.
[17] 胡婕,王如华,王稳江,等.客机机翼气动/结构多学科优化方法[J].南京航空航天大学学报,2012,44(4):458-463.HU J,WANG R H,WANG W J,et al.Multidisciplinary optimization of transport wing aerodynamic/structural integrated design[J].Journal of Nanjing University of Aeronautics & Astronautics,2012,44(4):458-463(in Chinese).
[18] 赵群,金海波,丁运亮,等.加筋板总体失稳分析的等效层合板模型[J].复合材料学报,2009,26(3):195-201.ZHAO Q,JIN H B,DING Y L.et al.Equivalent laminates model for stiffened panel global buckling analysis[J].Acta Materiae Compositae Sinica,2009,26(3):195-201(in Chinese).
[19] OUYANG X,YU X Q,WANG Y.Flutter analysis for wing structure using finite element modeling with equivalent stiffness[J].Journal of Vibroengineering,2014,16(3):1483-1493.
[20] JONES R M.Mechanics of composite materials[M].2nd ed.Philadelphia:Taylor & Francis Inc.,1999:55-118.
[21] ELHAM A.Weight indexing for multidisciplinary design optimization of lifting surfaces[D].Delft,Netherlands:Delft University of Technology,2013.

文章导航

/