一种优先级区分的机载无线网络MAC层自适应退避算法
收稿日期: 2015-04-13
修回日期: 2015-07-31
网络出版日期: 2015-08-04
基金资助
国家自然科学基金(61202490);航空科学基金(2013ZC15008)
An adaptive backoff algorithm in MAC layer for airborne network based on priority differentiation
Received date: 2015-04-13
Revised date: 2015-07-31
Online published: 2015-08-04
Supported by
National Natural Science Foundation of China (61202490);Aeronautical Science Foundation of China (2013ZC15008)
针对现有无线网络媒介接入控制(MAC)协议退避机制存在的竞争窗口(CW)易产生振荡、不能为紧急业务提供低时延QoS保障、难以区分服务类别等不足,提出了一种区分业务优先级的自适应退避(PAB)算法。该算法在二进制指数退避(BEB)算法的基础上,根据信道忙闲标识和业务优先级自适应选择相应退避阶段,通过参数设置可对不同优先级业务相邻退避阶段的前、后转移概率进行调整。利用二维马尔可夫链理论对PAB进行了建模分析,理论分析获得了饱和吞吐量和平均MAC时延的数学表达式,仿真实验结果表明:在机载无线网络(AN)环境下,PAB的性能相对BEB有了显著提升,可有效保障机载无线网络多业务类型的传输需求。
卓琨 , 张衡阳 , 郑博 , 黄国策 , 丁勇飞 , 陈涛 . 一种优先级区分的机载无线网络MAC层自适应退避算法[J]. 航空学报, 2016 , 37(4) : 1281 -1291 . DOI: 10.7527/S1000-6893.2015.0215
The existing backoff mechanisms in the media access control (MAC) layer of wireless networks exhibit some shortcomings, e.g., contention window (CW) oscillation occurs frequently, low delay QoS provisioning cannot be provided to ensure the demand of real-time traffic transmission, and different priority flows are not supported by different backoff schemes. To overcome the problems, a novel priority adaptive backoff (PAB) algorithm based on the binary exponential backoff (BEB) algorithm is proposed. In PAB, the backoff stage is chosen adaptively according to the channel busy identification and the services-priority, and the forwarding and receding transition probability between the consecutive backoff stages for different priority services can be adjusted for demands at any time. The 2D Markov chain is introduced to model and analyze PAB and the analytical expressions for the saturation throughput and average MAC delay are derived and verified by simulations. The results show that in airborne network (AN), the performance of PAB can offer a higher throughput and a lower delay than the BEB algorithm, and the transmission requirements of multi-service-types for ANs can be assured effectively.
Key words: airborne network; MAC layer; backoff algorithm; priority; Markov chain
[1] ILKER B, OZGUR K S, SAMIL T. Flying ad-hoc networks (FANETs):A survey[J]. Ad Hoc Networks, 2013, 11(3):1254-1270.
[2] KYUNG J K, YALIN S, JUSTIN Y, et al. Airborne network evaluation:Challenges and high fidelity emulation solution[J]. IEEE Communications Magazine, 2014, 52(10):30-36.
[3] OZGUR K S. Networking models in flying ad-hoc networks (FANETs):Concepts and challenges[J]. Journal of Intelligent & Robotic Systems, 2014, 74(1-2):513-527.
[4] LI J, GONG E L, SUN Z Q, et al. An interference-based distributed TDMA scheduling algorithm for aeronutical ad hoc networks[C]//International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery. Piscataway, NJ:IEEE Press, 2013:453-460.
[5] 李杰, 宫二玲, 孙志强, 等. 航空自组网STDMA时隙分配算法的设计与实现[J]. 航空学报, 2014, 35(12):3371-3383. LI J, GONG E L, SUN Z Q, et al. Design and implementation of STDMA slot allocation algorithm for aeronautical ad hoc networks[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12):3371-3383(in Chinese).
[6] LI J, ZHOU Y F, LOUISE L, et al. Packet delay in UAV wireless networks under non-saturated traffic and channel fading conditions[J]. Wireless Personal Communications, 2013, 72(2):1105-1123.
[7] STEPHEN M C, KELLI A H, SCOTT J F Z. Statistical priority-based multiple access system and method:7680077 B1[P]. 2010-03-16.
[8] JOHN C H. Method and apparatus for wireless data using doppler informtion:8614997 B1[P]. 2013-12-24.
[9] GIUSEPPE B. Performance analysis of the IEEE 802.11 distributed coordination function[J]. IEEE Journal on Selected Areas in Communications, 2000, 18(3):535-547.
[10] YE S R, TSENG Y C. A multichain backoff mechanism for IEEE 802.11 WLANs[J]. IEEE Transactions on Vehicular Technology, 2006, 55(5):1613-1620.
[11] 谢红刚, 肖进胜, 易本顺. BEB算法的不同退避阶段站点分布概率模型[J]. 西安电子科技大学学报, 2011, 38(5):178-183. XIE H G, XIAO J S, YI B S. BEB algorithm model of the probability distribution for the terminal in different backoff stages[J]. Journal of Xi'dian University, 2011, 38(5):178-183(in Chinese).
[12] ZHAO Q L, TSANG D H K, SAKURAI T. Modeling nonsaturated IEEE 802.11 DCF networks utilizing an arbitrary buffer size[J]. IEEE Transactions on Mobile Computing, 2010, 10(9):1-15.
[13] VARDAKAS J S, SIDIROPOULOS M K, LOGOTHETIS M D. Performance behaviour of IEEE 802.11 distributed coordination function[J]. Iet Circuits Devices & Systems, 2008, 2(1):50-59.
[14] BHAR G V, DEMAER S A, SHENKER S. MACAW:A media access protocol for wireless LANs[C]//Proceedings of ACM SIGCOMM' 94. Piscataway, NJ:IEEE Press, 1994:212-225.
[15] SONG N O, KWAK B J, SONG J. Enhancement of IEEE 802.11 distributed coordination function with exponential increase exponential decrease backoff algorithm[C]//Vehicular Technology Conference. Piscataway, NJ:IEEE Press, 2003:2775-2778.
[16] WU H, LONG K, CHENG S. IEEE 802.11 distributed coordination function (DCF):Analysis and enhancement[C]//Proceedings of ICC' 02. Piscataway, NJ:IEEE Press, 2002:605-609.
[17] 李瑞芳, 罗娟, 李仁发. 适于无线多媒体传感器网络的MAC层退避算法[J]. 通信学报, 2010, 31(11):107-116. LI R F, LUO J, LI R F. Backoff algorithm in MAC layer for wireless multimedia sensor networks[J]. Journal on Communications, 2010, 31(11):107-116(in Chinese).
[18] 朱颖, 夏海轮, 武穆清. 一种最小竞争窗口自适应调整的802.11退避算法[J]. 电子与信息学报, 2008, 30(4):961-965. ZHU Y, XIA H L, WU M Q. A self-adaptive minimum contention window adjusting backoff algorithm in IEEE 802.11 DCF[J]. Journal of Electronics & Information Technology, 2008, 30(4):961-965(in Chinese).
[19] 何宏, 李建东, 盛敏. 一种基于实时优化思想的多址接入协议性能分析[J]. 电子与信息学报, 2006, 28(5):810-814. HE H, LI J D, SHENG M. Performance analysis of a novel CRMA protocol based on runtime optimization[J]. Journal of Electronics & Information Technology, 2006, 28(5):810-814(in Chinese).
[20] 严少虎, 卓永宁, 吴诗其, 等. IEEE 802.11 DCF中带优先级的退避算法[J]. 电子与信息学报, 2005, 27(8):1316-1319. YAN S H, ZHOU Y N, WU S Q, et al. Priority backoff algorithm for IEEE 802.11 DCF[J]. Journal of Electronics & Information Technology, 2005, 27(8):1316-1319(in Chinese).
[21] 朱艺华, 徐晖, 彭静. IEEE 802.11无线网络的两步指数退避算法[J]. 电子与信息学报, 2011, 33(11):2575-2581. ZHU Y H, XU H, PENG J. Two-step backoff algorithm for IEEE 802.11 based wireless networks[J]. Journal of Electronics & Information Technology, 2011, 33(11):2575-2581(in Chinese).
[22] 王叶群, 黄国策, 张衡阳, 等. Ad hoc网络中一种生命周期约束的自适应退避算法[J]. 通信学报, 2012, 33(11):57-66. WANG Y Q, HUANG G C, ZHANG H Y, et al. Life cycle constrained backoff algorithm for ad hoc network[J]. Journal on Communications, 2012, 33(11):57-66(in Chinese).
[23] 朱颖, 武穆清. 最优化参数逼近的自适应退避算法[J]. 西安电子科技大学学报, 2007, 34(6):995-1000. ZHU Y, WU M Q. Self adaptive backoff algorithm in IEEE 802.11 with optimum parameter approaching[J]. Journal of Xi'dian University, 2007, 34(6):995-1000(in Chinese).
[24] 王叶群, 杨锋, 黄国策, 等. 一种航空自组网中带差分服务的跳频MAC协议建模[J]. 软件学报, 2013, 24(9):2214-2225. WANG Y Q, YANG F, HUANG G C, et al. Media access control protocol with differential service in aeronautical frequency-hopping ad hoc networks[J]. Journal of Software, 2013, 24(9):2214-2225(in Chinese).
[25] CHATZIMISIOS P, BOUCOUVALAS A C, VITSAS V. IEEE 802.11 wireless LAN's:Performance analysis and protocol refinement[J]. Eurasip Journal on Wireless Communications & Networking, 2005(1):67-78.
/
〈 | 〉 |