流体力学与飞行力学

1/4波长驻波型热声发动机的非线性模型

  • 侯薇 ,
  • 王晓宇 ,
  • 景晓东 ,
  • 孙晓峰
展开
  • 1. 中航空天发动机研究院有限公司, 北京 101304;
    2. 北京航空航天大学 能源与动力工程学院, 北京 100083
侯薇 女,博士,工程师。主要研究方向:热声非线性模型。Tel:010-56680655,E-mail:buaahouwei@163.com;王晓宇 女,博士,讲师。主要研究方向:气动声学。Tel:010-82338262,E-mail:bhwxy@buaa.edu.cn;孙晓峰 男,博士,教授,博士生导师。主要研究方向:气动声学和叶轮机稳定性。Tel:010-82317408,E-mail:sunxf@buaa.edu.cn

收稿日期: 2015-06-03

  修回日期: 2015-07-20

  网络出版日期: 2015-08-03

基金资助

国家973计划(2012CB720200);国家自然科学基金(51236001)

A quasi-one-dimensional nonlinear model of an open-closed standing-wave thermoacoustic engine

  • HOU Wei ,
  • WANG Xiaoyu ,
  • JING Xiaodong ,
  • SUN Xiaofeng
Expand
  • 1. AVIC Academy of Aeronautic Propulsion Technology, Beijing 101304, China;
    2. School of Energy and Power Engineering, Beihang University, Beijing 100083, China

Received date: 2015-06-03

  Revised date: 2015-07-20

  Online published: 2015-08-03

Supported by

National Basic Research Program of China (2012CB720200); National Natural Science Foundation of China (51236001)

摘要

为研究声波在热声系统开口端和负载构成的阻抗间断面上的声反射问题,针对一端开口的1/4波长驻波型热声发动机建立了一种基于截面平均的准一维非线性热声模型,并采用具有频散保持特性的高精度计算格式进行数值求解。在发动机开口端采用了对于系统共振频率具有一定选择自适应性的宽频时域声阻抗边界条件。宽频阻抗模型写成共轭复数对的留数和极点分式之和的形式,其时域形式可用递推卷积方法进行快速高效的求解,共轭复数系数采用优化拟合方法近似得出。模型可对一端开口的1/4波长驻波型发动机进行临界起振温度的预测,能够描述热声系统的瞬态压力波由初始小扰动经过非线性增长,最终达到饱和的全过程,计算结果与某微小型驻波热声发动机的实验结果相符。最后分析讨论了板叠的形状对热声系统的影响。

本文引用格式

侯薇 , 王晓宇 , 景晓东 , 孙晓峰 . 1/4波长驻波型热声发动机的非线性模型[J]. 航空学报, 2016 , 37(7) : 2091 -2101 . DOI: 10.7527/S1000-6893.2015.0207

Abstract

A quasi-one-dimensional nonlinear model of a standing-wave thermoacoustic engine with a quarter-wavelength resonator is presented. The model is based on cross-sectional averaged equations and is solved by high-order low-dispersion numerical schemes. Considering the acoustic reflection and radiation at the open end, broadband time-domain impedance boundary conditions are employed so that oscillation frequency can be self-adaptive. The impedance is expressed in the mathematical form of partial fraction expansion with complex-conjugate residues and poles, so that the convolution of the impedance with the velocity can be calculated by efficient and causal recursive convolution. Pole-residue pairs of the impedance can be optimized in the frequency domain. Critical temperature difference of an open-ended standing-wave thermoacoustic engine can be predicted and the time-domain simulation shows that the pressure oscillation undergoes a nonlinear amplifying process and eventually reaches saturation amplitude. Numerical results agree very well with the experiment for a small-scale thermoacoustic engine. The simulation results for different stack geometries are included.

参考文献

[1] GARRETT S L, ADEFF J A, HOFLER T J. Thermoacoustic refrigerator for space applications[J]. Journal of Thermophysics and Heat Transfer, 1993, 7(4):595-599.
[2] GARIMELLA S V, JOSHI Y K, BAR-COHEN A, et al. Thermal challenges in next generation electronic systems-Summary of panel presentations and discussions[J]. IEEE Transactions on Components and Packaging Technologies, 2003, 25(4):569-575.
[3] MATVEEV K I, WEKIN A, RICHARDS C D, et al. On the coupling between standing-wave thermoacoustic engine and piezoelectric transducer[C]//International Mechanical Engineering Congress and Exposition. Seattle, WA:ASME, 2007:765-769.
[4] HOFLER T J, ADEFF J A. An optimized miniature Hofler tube[J]. Acoustics Research Letters Online, 2001, 2(1):37-42.
[5] SYMKO O G, ABDEL-RAHMAN E, KWON Y S, et al. Design and development of high-frequency thermoacoustic engines for thermal management in microelectronics[J]. Microelectronics Journal, 2004, 35(2):185-191.
[6] JIN T, ZHANG B S, TANG K, et al. Experimental observation on a small-scale thermoacoustic prime mover[J]. Journal of Zhejiang University SCIENCE A, 2007, 8(2):205-209.
[7] HARIHARAN N M, SIVASHANMUGAM P, KASTHURIRENGAN S. Influence of stack geometry and resonator length on the performance of thermoacoustic engine[J]. Applied Acoustics, 2012, 73(10):1052-1058.
[8] JUNG S, MATVEEV K I. Study of a small-scale standing-wave thermoacoustic engine[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2010, 224(1):133-141.
[9] ROTT N. Damped and thermally driven acoustic oscillations in wide and narrow tubes[J]. Zeitschrift Für Angewandte Mathematik und Physik ZAMP, 1969, 20(2):230-243.
[10] SWIFT G W. Thermoacoustic engines[J]. The Journal of the Acoustical Society of America, 1988, 84(4):1145-1180.
[11] WATANABE M, PROSPERETTI A, YUAN H. A simplified model for linear and nonlinear processes in thermoacoustic prime movers. Part I. Model and linear theory[J]. The Journal of the Acoustical Society of America, 1997, 102(6):3484-3496.
[12] YUAN H, KARPOV S, PROSPERETTI A. A simplified model for linear and nonlinear processes in thermoacoustic prime movers. Part Ⅱ. Nonlinear oscillations[J]. The Journal of the Acoustical Society of America, 1997, 102(6):3497-3506.
[13] KARPOV S, PROSPERETTI A. A nonlinear model of thermoacoustic devices[J]. The Journal of the Acoustical Society of America, 2002, 112(4):1431-1444.
[14] HAMILTON M F, ILINSKⅡ Y A, ZABOLOTSKAYA E A. Nonlinear two-dimensional model for thermoacoustic engines[J]. The Journal of the Acoustical Society of America, 2002, 111(5):2076-2086.
[15] HIRECHE O, WEISMAN C, BALTEAN-CARLES D, et al. Low Mach number analysis of idealized thermoacoustic engines with numerical solution[J]. The Journal of the Acoustical Society of America, 2010, 128(6):3438-3448.
[16] HIRECHE O, WEISMAN C, BALTEAN-CARLES D, et al. Numerical model of a thermoacoustic engine[J]. Comptes Rendus Mécanique, 2010, 338(1):18-23.
[17] DOWLING A P, FFOWCS WILLIAMS J E, WRIGHT W M. Sound and sources of sound[J]. American Journal of Physics, 1983, 53(6):320.
[18] CHESTER W. Resonant oscillations of a gas in an open-ended tube[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1981, 377(1771):449-467.
[19] KARPOV S, PROSPERETTI A. Nonlinear saturation of the thermoacoustic instability[J]. The Journal of the Acoustical Society of America, 2000, 107(6):3130-3147.
[20] 侯薇, 潘浩然, 宋卫华, 等. 有限长号筒中非线性声传播的数值模拟研究[J]. 声学学报, 2015(4):569-578. HOU W, PAN H R, SONG W H, et al. Numerical simulation of nonlinear propagation of sound waves in a finite horn[J]. Acta Acustica, 2015(4):569-578(in Chinese).
[21] RIENSTRA S W. Impedance models in time domain, including the extended Helmholtz resonator model:AIAA-2006-2686[R]. Reston:AIAA, 2006.
[22] REYMEN Y, BAELMANS M, DESMET W. Time-domain impedance formulation based on recursive convolution:AIAA-2006-2685[R]. Reston:AIAA, 2006.
[23] FUNG K Y, JU H. Broadband time-domain impedance models[J]. AIAA Journal, 2001, 39(8):1449-1454.
[24] FUNG K Y, JU H. Time-domain impedance boundary conditions for computational acoustics and aeroacoustics[J]. International Journal of Computational Fluid Dynamics, 2004, 18(6):503-511.
[25] COTTE B, BLANC-BENON P, BOGEY C, et al. Time-domain impedance boundary conditions for simulations of outdoor sound propagation[J]. AIAA Journal, 2009, 47(10):2391-2403.
[26] BOX M J. A comparison of several current optimization methods, and the use of transformations in constrained problems[J]. The Computer Journal, 1966, 9(1):67-77.
[27] TAM C K W. Computational aeroacoustics-issues and methods[J]. AIAA Journal, 1995, 33(10):1788-1796.
[28] STANESCU D, HABASHI W G. 2N-storage low dissipation and dispersion Runge-Kutta schemes for computational acoustics[J]. Journal of Computational Physics, 1998, 143(2):674-681.
[29] LEVINE H, SCHWINGER J. On the radiation of sound from an unflanged circular pipe[J]. Physical Review, 1948, 73(4):383-406.
[30] HANTSCHK C C, VORTMEYER D. Numerical simulation of self-excited thermoacoustic instabilities in a Rijke tube[J]. Journal of Sound and Vibration, 1999, 227(3):511-522.
[31] YU G, DAI W, LUO E. CFD simulation of a 300Hz thermoacoustic standing wave engine[J]. Cryogenics, 2010, 50(9):615-622.
[32] SWIFT G W. Thermoacoustic:A unifying perspective for some engines and refrigerators[J]. The Journal of the Acoustical Society of America, 2003, 113(5):2379-2381.

文章导航

/