流体力学与飞行力学

来流参数对防热瓦横缝旋涡结构及热环境的影响

  • 邱波 ,
  • 国义军 ,
  • 张昊元 ,
  • 曾磊 ,
  • 石友安 ,
  • 桂业伟
展开
  • 1. 中国空气动力研究与发展中心, 空气动力学国家重点实验室, 绵阳 621000;
    2. 中国空气动力研究与发展中心, 计算空气动力研究所, 绵阳 621000
邱波,男,硕士研究生。主要研究方向:高超声速飞行器气动热与热防护。Tel:0816-2463319,E-mail:qbuptoyou@126.com;国义军,男,研究员。主要研究方向:高超声速飞行器气动热与热防护。Tel:0816-2463316,E-mail:GYJ2236985@sina.com

收稿日期: 2015-03-24

  修回日期: 2015-06-06

  网络出版日期: 2015-07-25

基金资助

国家自然科学基金(91216204);国家"973"计划(2014CB744100)

Free stream parameters' effects on vortexes and aerodynamic heating environment in thermal protection tile transverse gaps

  • QIU Bo ,
  • GUO Yijun ,
  • ZHANG Haoyuan ,
  • ZENG Lei ,
  • SHI Youan ,
  • GUI Yewei
Expand
  • 1. State Key Laboratory of Aerodynamics of China Aerodynamic Research and Development Center, Mianyang 621000, China;
    2. Computational Aerodynamics Institute of China Aerodynamic Research and Development Center, Mianyang 621000, China

Received date: 2015-03-24

  Revised date: 2015-06-06

  Online published: 2015-07-25

Supported by

National Natural Science Foundation of China(91216204);National Basic Research Program of China(2014CB744100)

摘要

针对高超声速飞行器表面缝隙内部流动,通过求解可压缩Navier-Stokes方程,自主研发了一套能够较好模拟缝隙流动特性的计算流体力学(CFD)软件。利用该软件研究了来流参数对防热瓦横缝旋涡结构及热环境的影响。计算结果表明:随着来流雷诺数的增加,缝内旋涡结构呈现主涡个数增多形态趋于饱满的变化趋势,缝隙壁面绝对热流和无量纲热流增加;随着来流马赫数的增加,缝内主涡个数、形态基本不变,但主涡旋转速度增加,缝隙壁面绝对热流增加,无量纲热流基本不变;随着来流迎角的增加(迎角较小时),缝内旋涡结构和热流变化规律基本与增加来流雷诺数相同。由此分析可知,涡量向下传递并形成旋涡的距离,即形成所谓"死水区"的深度,主要由来流雷诺数和来流迎角决定。

本文引用格式

邱波 , 国义军 , 张昊元 , 曾磊 , 石友安 , 桂业伟 . 来流参数对防热瓦横缝旋涡结构及热环境的影响[J]. 航空学报, 2016 , 37(3) : 761 -770 . DOI: 10.7527/S1000-6893.2015.0177

Abstract

By solving the compressible Navier-Stokes equations, a computational fluid dynamics(CFD) software is developed independently, which can well simulate the flow in the gap in hypersonic vehicle surface. An analytical study has been performed through this software to investigate the free stream parameters' effects on vortexes and aerodynamic heating environment of thermal protection tile transverse gaps. The results indicate that with the increase of free stream Reynolds number, the number of main vortexes increases, the shape of main vortexes becomes plumper, and the dimensional and non-dimensional heat flux increases; with the increase of free stream Mach number, the number and shape of main vortexes almost stay the same, the dimensional heat flux is increasing but the non-dimensional heat flux remain unchanged; with the increase of free stream angle of attack(comparatively low), the change rules of vortexes and heat flux are basically the same with increasing free stream Reynolds number. So we know that the depth of the so-called "dead water zone" greatly depends on the free stream Reynolds number and angle of attack.

参考文献

[1] 范阳涛, 汪民乐, 朱亚红, 等. 临近空间高超声速飞行器作战应用研究[J]. 飞航导弹, 2014(4):15-19. FAN Y T, WANG M Y, ZU Y H, et al. Near space hypersonic vehicle operational application[J]. Cruise Missile, 2014(4):15-19(in Chinese).
[2] 张攀峰, 詹世革. 从国家自然科学基金资助看高超声速流动研究的发展现状[J]. 航空学报, 2015, 36(1):1-6. ZHANG P F, ZHAN S G. Development of hypersonic flow research in China based on supported projects of NSFC[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):1-6(in Chinese).
[3] 唐志共, 张益荣, 陈坚强, 等. 更准确、更精确、更高效高——超声速流动数值模拟研究进展[J]. 航空学报, 2015, 36(1):120-134. TANG Z G, ZHANG Y R, CHEN J Q, et al. More fidelity, more accurate, more efficient-progress on numerical simulations for hypersonic flow[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):120-134(in Chinese).
[4] 王浚, 王佩广. 高超声速飞行器一体化防热与热控设计方法[J]. 北京航空航天大学学报, 2006, 32(10):1129-1134. WANG J, WANG P G. Integrated thermal protection and control system design methodology for hypersonic vehicles[J]. Joumal of Beijing University of Aeronautics and Astronautics, 2006, 32(10):1129-1134(in Chinese).
[5] HINDERKS M, RAdespiel R, GUlhan A. Simulation of hypersonic gap flow with consideration of fluid structure interactuion:AIAA-2004-2238[R]. Reston:AIAA,2004.
[6] KNIGHT N F, Jr, SONG K, RAJU I S. Space shuttle orbiter wing-leading-edge panel thermo-mechanical analysis for entry conditions:AIAA-2010-2688[R]. Reston:AIAA, 2010.
[7] SMITH D M, PETLEY D N, EDWARDS C L w, et al. An investigation of gap heating due to stepped tiles in zero pressure gradient regions of the shuttle orbiter thermal protection system:AIAA-1983-0120[R]. Reston:AIAA, 1983.
[8] 邱波, 张昊元, 国义军, 等. 高超声速飞行器表面横缝旋涡结构及气动热环境数值模拟[J]. 航空学报, 2015, 36(10):3515-3521. QIU B, ZHANG H Y, GUO Y J, et al. Numerical investigation for vortexes and aerodynamic heating environment on transverse gap on hypersonic vehicle surface[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10):3515-3521(in Chinese).
[9] 朱自强, 吴子牛, 李津, 等. 应用计算流体力学[M]. 北京:北京航空航天大学出版社, 1998:49-50. ZHU Z Q, WU Z N, LI J, et al. Applied computaional fluid mechanics[M]. Beijing:Beihang University Press, 1998:49-50(in Chinese).
[10] VAN LEER B. Towards the ultimate conservative difference scheme V. A second order sequel to godunov's method[J]. Journal of Computational Physics, 1979, 32(1):101-136.
[11] ANDERSON W K, THOMAS J L, VAN LEER B. A comparison of finite volume flux vector splitting for the Euler equations[J]. AIAA Journal, 1986, 24(9):1453-1460.
[12] YOON S. LU-SGS implicit algorithm for three-dimensional incompressible Navier-Stokes equations with source term:AIAA-1989-1984[R]. Reston:AIAA, 1989.
[13] WIETING A R. Experimental investigation of heat-transfer distibutions in deep cavities in hypersonic separated flow:NASA Technical Note D-5908[R]. Washington, D.C.:NASA, 1970.
[14] 童秉纲, 尹协远, 朱克勤. 涡运动理论[M]. 合肥:中国科学技术大学出版社, 2009:10-13. TONG B G, YIN X Y, ZHU K Q. Theory of vortex motion[M]. Hefei:Press of University of Science and Technology of China, 2009:10-13(in Chinese).
[15] AVERY D E. Experimental aerodynamic heating to simulated space shuttle tiles in laminar and turbulent boundary layers with variable flow angles at a nominal Mach number of 7:NASA Technical Paper 2307[R]. Washington, D.C.:NASA, 1985.
[16] 唐贵明. 狭窄缝隙内的热流分布实验研究[J]. 流体力学实验与测量, 2000, 14(4):1-6. TANG G M. Experimental investigation of heat transfer distributions in a deep gap[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(4):1-6(in Chinese).
[17] 沈淳, 夏新林, 曹占伟, 等. 缝隙-腔体密封结构在高速气流冲击下的整体流动、传热特性分析[J].航空学报, 2012, 33(1):34-43. SHEN C, XIA X L, CAO Z W, et al. Analysis of flow and heat characteristics of seal structure with gap and cavity under the impact of high speed airflow[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(1):34-43(in Chinese).
[18] 唐功跃, 吴国庭, 姜贵庆. 缝隙流动分析及其热环境的工程计算[J]. 中国空间科学技术, 1996, 16(6):1-7. TANG G Y, WU G T, JANG G Q. Flow analysis and numerical computation of thermal environment in gaps[J]. Chinese Space Science and Technology, 1996, 16(6):1-7(in Chinese).
[19] 吴子牛, 王兵, 周睿,等. 空气动力学[M]. 北京:清华大学出版社, 2007:265-268. WU Z N, WANG B, ZHOU R, et al. Gas dynamics[M]. Beijing:Tsinghua University Press, 2007:265-268(in Chinese).
[20] 张茂, 宋笔锋, 冯藴雯. 基于有限元方法的防热瓦损伤分析[J]. 航空计算技术, 2006, 36(1):67-70. ZHANG M, SONG B F, FENG Y W. Analysis of TPS damage based on finite element method[J]. Aeronautical Computing Technique, 2006, 36(1):67-70(in Chinese).FD Conference,1989.
[8] Tong Binggang, Yin Xieyuan, Zhu Keqin. Theory of vortex motion[M]. Press of University of Science and Technology of China, 2009. (in Chinese)
童秉纲, 尹协远, 朱克勤. 涡运动理论[M]. 中国科学技术大学出版社, 2009.
[9] Allan R. Wieting, Experimental investigation of heat-transfer distibutions in deep cavities in hypersonic separated flow.September 1970.
[10] Don E. Avery. Experimental Aerodynamic Heating to Simulated Space Shuttle Tiles in Laminar and Turbulent Boundary Layers With Variable Flow Angles at a Nominal Mach Number of 7. August, 1985.
[11] Tang Guiming. Experimental investigation of heat transfer distributions in a deep gap[J]. Experiments and Measurements in Fluid Mechanics. 2000, 14(4). (in Chinese)
唐贵明.狭窄缝隙内的热流分布实验研究[J].流体力学实验与测量.2000, 14(4).
[12] Tong Gongyue. Theoretical and experiment investigation for gap heating environment[D]. China Academy of Space Technology master`s thesis,1996.(in Chinese)
唐功跃.缝隙热环境及其机理的理论和试验研究[D].中国空间技术研究所硕士论文, 1996.
[13] Tang Gongyue, Wu Guoting. Flow analysis and numerical computation of thermal environment in gaps[J]. Chinese Space Science and Technology. 1996.(in Chinese)
唐功跃, 吴国庭, 姜贵庆. 缝隙流动分析及其热环境的工程计算[J]. 中国空间科学技术. 1996.
[14] Wu Ziniu, Wang Bing, Zhou Rui, et al. Gas dynamics[M]. Beijing: Tsinghua university press, 2007. (in Chinese)
吴子牛,王兵,周睿,等. 空气动力学[M]. 北京:清华大学出版社,2007.
[15] Zhang Mao, Song Bifeng, Feng Yunwen. Analysis of TPS damage based on finite element method. Aeronautical Computing Technique[J]. 2006, 36(1). (in Chinese)
张茂,宋笔锋,冯藴雯.基于有限元方法的防热瓦损伤分析.航空计算技术[J], 2006, 36(1).

文章导航

/