电子与控制

基于两步最小二乘定位的偏差改进算法

  • 张杰 ,
  • 蒋建中 ,
  • 郭军利
展开
  • 信息工程大学信息系统工程学院, 郑州 450002
蒋建中,男,硕士,教授。主要研究方向:通信中的信号处理。Tel:0371-81622197,E-mail:jiang3721@sina.com;郭军利,男,硕士,副教授。主要研究方向:通信中的信号处理。Tel:0371-81622197,E-mail:gjl@163.com

收稿日期: 2015-01-30

  修回日期: 2015-06-15

  网络出版日期: 2015-07-19

基金资助

国家自然科学基金(61104036)

Improved bias algorithm for localization using two-step least square

  • ZHANG Jie ,
  • JIANG Jianzhong ,
  • GUO Junli
Expand
  • College of Information System Engineering, University of Information and Engineering, Zhengzhou 450002, China

Received date: 2015-01-30

  Revised date: 2015-06-15

  Online published: 2015-07-19

Supported by

National Natural Science Foundation of China(61104036)

摘要

针对传统最小二乘(LS)定位算法在噪声较大时会出现有偏估计的问题。首先详细推导了传统两步最小二乘算法在时差角度联合定位场景下的理论偏差,给出了出现偏差的原因;其次对误差均值加入二次约束条件,提出一种基于时差角度联合定位的改进算法,并详细推导新算法的理论偏差以及均方误差。相比于其他加限制条件的方法,新算法能有效降低估计偏差,另外由于其不需要进行特征值分解且能得到闭式解,计算复杂度较小。仿真结果表明,新算法在保持原有均方误差(MSE)的前提下能显著降低估计偏差,其定位偏差与最大似然估计器相当。

本文引用格式

张杰 , 蒋建中 , 郭军利 . 基于两步最小二乘定位的偏差改进算法[J]. 航空学报, 2016 , 37(2) : 695 -705 . DOI: 10.7527/S1000-6893.2015.0182

Abstract

Bias of a source location estimate using classical least square(LS) algorithm is significant when the noise is large. This paper started by deriving the theoretical bias of the time-differences-of-arrival(TDOA) and angle-of-arrival(AOA) positioning which used the classical two-step LS algorithm and found the reason which caused the bias. Then the improved TDOA and AOA algorithm was proposed by adding the quadratic constraints to the expectation of the error. Compared to other methods with constraints, the novel algorithm can reduce the bias considerably. Furthermore, because the new algorithm does not require eigenvalue decomposition and can obtain the closed-form solution, it has little computation load. Simulation shows that the new method can reduce the bias significantly and obtain the original mean-square error(MSE). The improved algorithm is able to lower the bias to the same level as the maximum likelihood estimator.

参考文献

[1] 王鼎, 张莉, 吴瑛. 基于角度信息的结构总体最小二乘无源定位算法[J]. 中国科学F辑:信息科学, 2009, 39(6):663-672. WANG D, ZHANG L, WU Y. Structured total least squares algorithm for passive location based on bearing only measurements[J]. Science in China F:Information Sciences, 2009, 39(6):663-672(in Chinese).
[2] CHAN Y T, HO K C. A simple and efficient estimator for hyperbolic location[J]. IEEE Transactions on Signal Processing, 1994, 42(8):1905-1915.
[3] HAO B J, LI Z, SI J B, et al. Joint source localization and sensor refinement using time differences of arrival and frequency differences of arrival[J]. IET Signal Processing, 2014, 8(6):588-600.
[4] WEISS A J. Direct geolocation of wideband emitters based on delay and Doppler[J]. IEEE Transactions on Signal Processing, 2011, 59(6):2513-2521.
[5] 王鼎. 观测站位置状态扰动下Taylor级数迭代定位方法及性能分析[J]. 宇航学报, 2013, 34(12):1634-1643. WANG D. The Taylor-series location and its performance analysis with erroneous observer positions[J]. Journal of Astronautics, 2013, 34(12):1634-1643(in Chinese).
[6] 张杰, 蒋建中, 郭军利. 校正源状态扰动下Taylor级数迭代定位方法[J]. 应用科学学报, 2015, 33(3):274-289. ZHANG J, JIANG J Z, GUO J L. Source localization using Taylor-series iteration with erroneous calibration emitters state[J]. Journal of Applied Science, 2015, 33(3):274-289(in Chinese).
[7] SUN M, YANG L, HO K C. Efficient joint source and sensor localization in closed-form[J]. IEEE Signal Processing Letters, 2012, 19(7):399-402.
[8] HO K C, SUN M. Passive source localization using time differences of arrival and gain ratios of arrival[J]. IEEE Transactions on Signal Processing, 2008, 56(2):464-477.
[9] 邓平, 李莉, 范平志. 一种TDOA/AOA混合定位算法及其性能分析[J]. 电波科学学报, 2002, 17(6):633-636. DENG P, LI L, Fan P Z. A hybrid TDOA/AOA location algorithm and its performance analysis[J]. Chinese Journal of Radio Science, 2002, 17(6):633-636(in Chinese).
[10] CHEUNG K W, SO H C, MA W K, et al. A constrained least squares approach to mobile positioning:Algorithms and optimality[J]. EURASIP Journal on Applied Signal Processing, 2006, 2006(5):1-23.
[11] HO K C, XU W W. An accurate algebraic solution for moving source location using TDOA and FDOA measurements[J]. IEEE Transactions on Signal Processing, 2004, 52(9):2453-2463.
[12] RUI L Y, HO K C. Bias analysis of source localization using the maximum likelihood estimator[C]//Proceeding of the 2012 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway, NJ:IEEE Press, 2012:2605-2608.
[13] YU H G, HUANG G M, GAO J, et al. An efficient constrained weighted least squares algorithm for moving source location using TDOA and FDOA measurements[J]. IEEE Transactions on Wireless Communication, 2012, 11(1):44-47.
[14] 王鼎, 吴瑛, 田建春. 基于总体最小二乘算法的多站无源定位[J]. 信号处理, 2007, 23(4):611-614. WANG D, WU Y, TIAN J C. Multi-station passive location based on TLS algorithm[J]. Signal Processing, 2007, 23(4):611-614(in Chinese).
[15] BARTON R J, RAO D. Performance capabilities of long-range UWB-IR TDOA localization systems[J]. ESRASIP Journal on Advances in Signal Processing, 2008, 2008(1):1-17.
[16] HO K C. Bias reduction for an explicit solution of source localization using TDOA[J]. IEEE Transactions on Signal Processing, 2012, 60(5):2101-2114.
[17] ANTONIOU A, LU W S. Practical optimization algorithms and engineering application[M]. New York:Springer, 2007:287-290.
[18] REES E L. Graphical discussion of the roots of a quartic equation[J]. The American Mathematical Monthly, 1922, 29(2):51-55.
[19] MOON T K, STIRLING W C. Mathematical methods and algorithms for signal processing[M]. Upper Saddle River, NJ:Prentice-Hall, 2000:235.
[20] XU B, QI W D, LI W. Turbo-tswls:Enhanced two-step weighted least squares estimator for TDOA-based localization[J]. Electronics Letters, 2012, 48(25):1597-1598.

文章导航

/