流体力学与飞行力学

非预混喷注对旋转爆震发动机影响的数值研究

  • 徐雪阳 ,
  • 卓长飞 ,
  • 武晓松 ,
  • 李杰 ,
  • 马虎
展开
  • 1. 南京理工大学机械工程学院, 南京 210094;
    2. 豫西工业集团有限公司, 南阳 473000
徐雪阳,男,硕士研究生。主要研究方向:旋转爆震发动机。E-mail:xuxueyang1012@163.com;卓长飞,男,博士研究生。主要研究方向:新型动力装置。E-mail:njust203zcf@126.com;武晓松,男,博士,教授,博士生导师。主要研究方向:爆震发动机。Tel:025-84315456,E-mail:nust203@mail.njust.edu.cn

收稿日期: 2015-04-27

  修回日期: 2015-06-30

  网络出版日期: 2015-07-10

基金资助

国家自然科学基金(51376091);国家自然科学青年基金(11402119)

Numerical simulation of injection schemes with separate supply of fuel and oxidizer effects on rotating detonation engine

  • XU Xueyang ,
  • ZHUO Changfei ,
  • WU Xiaosong ,
  • LI Jie ,
  • MA Hu
Expand
  • 1. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
    2. Yuxi Industrial Group Co. Ltd., Nanyang 473000, China

Received date: 2015-04-27

  Revised date: 2015-06-30

  Online published: 2015-07-10

Supported by

National Natural Science Foundation of China (51376091);National Natural Science Youth Foundation of China (11402119)

摘要

为了研究真实情况下非预混喷注对旋转爆震发动机工作过程的影响,采用氢氧7组分8步化学反应的基元反应模型,忽略黏性、热传导和扩散等输运效应。对真实情况下燃料(H2)和氧化剂(Air)分开喷注的旋转爆轰发动机进行三维数值模拟,深入分析了非预混条件下的旋转爆震波流场结构,探讨了燃料喷注方式对发动机性能的影响。计算结果表明:本文方法可有效模拟燃料与氧化剂非预混喷注的旋转爆震波流场。在给定的计算条件下,不同喷注方式发动机的爆震波平均传播速度大约为1640~1840 m/s;平均推力为90~100 N;基于混合物的比冲为820~900 m/s。随着燃料喷注位置的前移,发动机性能明显提高;燃料喷注角度对发动机性能影响较小,随着喷注角度的减小,发动机性能逐渐提高,提高幅度较小;燃料双侧喷注的性能明显优于单侧喷注。旋转爆震发动机的性能与燃料/氧化剂的冷流掺混效果成正比。

本文引用格式

徐雪阳 , 卓长飞 , 武晓松 , 李杰 , 马虎 . 非预混喷注对旋转爆震发动机影响的数值研究[J]. 航空学报, 2016 , 37(4) : 1184 -1195 . DOI: 10.7527/S1000-6893.2015.0195

Abstract

In order to study the operation process of rotating detonation engine (RDE) with separate supply of fuel (H2) and oxidizer (Air) in the real situation, a reduced kinetic mechanism based on 7-step reaction and 8 specie is used to simulate three-dimensional RDE, and the transport processes such as thermal conduction,diffusion and viscosity are ignored. The flow field structure of RDE and the influence of fuel injection strategies on RDE characteristics are discussed in detail. Results show that:the numerical method used in this article can simulate the flow field structure of the RDE effectively; In a given calculation condition, different injection schemes are comparatively studied. The average propagation velocity of rotating detonation wave changes from 1 640 m/s to 1 840 m/s and the average thrust of the rotating detonation engine changes from 90 N to 100 N. The specific impulse based on mixtures changes from 820 m/s to 900 m/s. As the injection position moved forward, the RDE characteristics are obviously improved. But the change of the injection angle has a little influence. As the injection angle decreases, the RDE performance is gradually improved. The RDE performance with the double side injection method was much better than that with the unilateral injection. The RDE performance is proportional to the mixing effect. The study provides some references for the further research of RDE.

参考文献

[1] VOITSEKHOVSKⅡ B V. Maintained detonations[J]. Doklady Akademii Nauk UzSSR, 1959, 129(6):1254-1256.
[2] VOITSEKHOVSKⅡ B V. Spinning maintained detonations[J]. Prikladnaya Mekhanikai Tekhnicheskaya Fizikal, 1960(3):157-164.
[3] NICHOLLS J A, CULLEN R E, RAGLAND K W. Feasibility studies of a rotating detonation wave rocket motor[J]. Journal of Spacecraft and Rocket, 1966, 3(6):893-898.
[4] ADAMSON T C, OLSSON G R. Performance analysis of a rotating detonation wave engine[J]. Astronautica Acta, 1967, 13(3):405-415
[5] BYKOVSKⅡ F A, VEDERNIKOV E F. Continuous spin detonation in annular combustors[J]. Combustion, Explosion, and Shock Waves, 2005, 41(4):449-459.
[6] BYKOVSKⅡ F A, ZHDAN S A, VEDERNIKOV E F. Continuous spin detonation[J]. Journal of Propulsion and Power, 2006, 22(6):1204-1216.
[7] FALERNPIN F, NAOUR B L. MBDA R&T effect on pulsed and continuous detonation wave engines[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2011, 28(1):12-22.
[8] THOMAS L M, SCHAUER F R, HOKE J L, et al. Build up and operation of a rotating detonation engine:AIAA-2011-0602[R]. Reston:AIAA, 2011.
[9] RUSSO R M, KING P I, SCHAUER F R, et al. Characterization of pressure rise across a continuous detonation engine:AIAA-2011-6046[R]. Reston:AIAA, 2011.
[10] SHANK J C, KING P I. Development and testing of a modular rotating detonation engine:AIAA-2012-0120[R]. Reston:AIAA, 2012.
[11] THEUERKAUF S W, KING P I. Thermal management for a modular rotating detonation engine:AIAA-2013-1176[R]. Reston:AIAA, 2013.
[12] 刘世杰, 林志勇, 林伟, 等. H2/Air连续旋转爆震波的起爆及传播过程实验[J]. 推进技术, 2012, 33(3):483-489. LIU S J, LIN Z Y, LIN W, et al. Experiment on the ignition and propagation processes of H2/Air Continuous rotating detonation wave[J]. Journal of Propulsion Technology, 2012, 33(3):483-489(in Chinese).
[13] 郑权, 翁春生, 白桥栋. 倾斜环缝喷孔式连续旋转爆轰发动机试验[J]. 推进技术, 2014, 35(4):570-577. ZHENG Q, WENG C S, BAI Q D, Experiment on continuous rotating detonation engine with tilt slot injector[J]. Journal of Propulsion Technology, 2014, 35(4):570-577(in Chinese).
[14] KINDRACKI J, WOLANSKI Z P, GUT Z. Experimental research on the rotating detonation in gaseous fuels-oxygen mitures[J]. Shock Waves, 2011, 21(2):75-84.
[15] YI T H, TURANGAN C. Effect of nozzle shapes on the performance of continuously rotating detonation engine:AIAA-2009-0152[R]. Reston:AIAA, 2009.
[16] JIANG X H, FAN B C, GUI Y M, et al. Numerical investigations on the three-dimensional flow patterns of the continuous rotation detonation[C]//Minsk:22nd International Colloquium on Dynamics of Explosions and Reactive Systems, 2009.
[17] 刘世杰, 覃慧, 林志勇, 等. 连续旋转爆震波细致结构及自持机理推进技术[J]. 推进技术, 2011, 32(3):431-436. LIU S J, QIN H, LIN Z Y, et al. Detailed structure and propagating mechanism research on continuous rotating detonation wave[J]. Journal of Propulsion Technology, 2011, 32(3):431-436(in Chinese).
[18] 邵业涛, 王健平, 唐新猛, 等. 连续旋转爆震发动机流场三维数值模拟[J]. 航空动力学报, 2010, 25(8):1717-1722. SHAO Y T, WANG J P, TANG X M, et al. Three-dimensional numerical simulation of continuous rotating detonation engine flowfields[J]. Journal of Aerospace Power, 2010, 25(8):1717-1722(in Chinese).
[19] 邵业涛, 刘勐, 王健平. 圆柱坐标系下连续旋转爆震发动机的数值模拟[J]. 推进技术, 2009, 30(6):717-721. SHAO Y T, LIU M, WANG J P. Numerical simulation of continuous rotating detonation engine in column coordinate[J]. Journal of Propulsion Technology, 2009, 30(6):717-721(in Chinese).
[20] 归明月, 范宝春, 张旭东, 等. 旋转爆震的三维数值模拟[J]. 推进技术, 2010, 31(1):82-86. GUI M Y, FAN B C, ZHANG X D, et al. Three-dimensional simulation of continuous spin detonation[J]. Journal of Propulsion Technology, 2010, 31(1):82-86(in Chinese).
[21] 姜孝海, 范宝春, 董刚, 等. 旋转爆震流场的数值模拟[J]. 推进技术, 2007, 28(4):403-407. JIANG X H, FAN B C, DONG G, et al. Numerical investigation on the flow field of rotating detonation wave[J]. Journal of Propulsion Technology, 2007, 28(4):403-407(in Chinese).
[22] FROLOV S M, DUBROVSKⅡ A V, IVANOV V S. Three-dimensional numerical simulation of the operation of a rotation-detonation chamber with separate supply of fuel and oxidizer[J]. Russian Journal of Physical Chemistry B, 2013, 7(1):35-43.
[23] 卓长飞, 武晓松, 封峰. 底部排气弹三维湍流燃烧的数值模拟[J]. 固体火箭技术, 2013, 36(6):720-726. ZHUO C F, WU X S, FENG F. Numerical simulation of three-dimensional turbulent combustion of the base bleed projectile[J]. Journal of Solid Rocket Technology, 2013, 36(6):720-726(in Chinese).
[24] 卓长飞, 武晓松, 封峰. 超声速流动中底部排气减阻的数值研究[J]. 兵工学报, 2014, 35(1):18-25. ZHUO C F, WU X S, FENG F. Numeiical research on drag reduction of base bleed in supersonic flow[J]. Acta Armamentarii, 2014, 35(1):18-25(in Chinese).
[25] 徐雪阳, 武晓松, 卓长飞, 等. 旋转爆轰发动机燃烧室掺混特性数值研究[J]. 弹道学报, 2015, 27(3):66-75. XU X Y, WU X S, ZHUO C F, et al. Numerical simulation of mixing characteristics in rotating detonation engine combustor[J]. Journal of Balistics, 2015, 27(3):66-75(in Chinese).
[26] MOUZA A A, PATSAC M, SEHONFELD F. Mixing performance of a chaotic micro-mixer[J]. Chemical Engineering Research and Design, 2008, 86(10):1128-1134.

文章导航

/