固体力学与飞行器总体设计

多孔材料夹层结构声辐射特性的两尺度拓扑优化设计

  • 李汪颖 ,
  • 杨雄伟 ,
  • 李跃明
展开
  • 西安交通大学航天航空学院机械结构强度与振动国家重点实验室, 西安 710049
李汪颖,男,硕士研究生。主要研究方向:结构声振优化。Tel:029-82668340 E-mail:lwy.sf@163.com;杨雄伟,男,博士。主要研究方向:结构拓扑优化及降阶分析。Tel:029-82668340 E-mail:xiongwei@stu.xjtu.edu.cn;李跃明,男,博士,教授,博士生导师。主要研究方向:结构多场耦合动力学响应分析及优化设计。Tel:029-82668340 E-mail:liyueming@mail.xjtu.edu.cn

收稿日期: 2015-04-13

  修回日期: 2015-05-19

  网络出版日期: 2015-06-28

基金资助

国家自然科学基金(11472206,11321062)

Two-scale topology optimization design of sandwich structures of a porous core with respect to sound radiation

  • LI Wangying ,
  • YANG Xiongwei ,
  • LI Yueming
Expand
  • State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China

Received date: 2015-04-13

  Revised date: 2015-05-19

  Online published: 2015-06-28

Supported by

National Natural Science Foundation of China (11472206,11321062)

摘要

基于均匀化计算理论结合结构构型设计和材料构型设计,建立以声辐射功率为目标的两尺度材料/结构协同优化模型,针对夹层结构声学设计问题,开展了声辐射特性拓扑优化研究。分别给出了声辐射功率对宏观和微观设计变量的灵敏度,结合移动渐近线法(MMA)实现了材料/结构两尺度设计。结果表明,声辐射功率两尺度优化改变了夹层结构各阶主振型的形状和顺序,同时也改变了被激发的振型。此外,算例研究了激励频率和约束对优化结果的影响以及声辐射功率目标优化的特殊现象。

本文引用格式

李汪颖 , 杨雄伟 , 李跃明 . 多孔材料夹层结构声辐射特性的两尺度拓扑优化设计[J]. 航空学报, 2016 , 37(4) : 1196 -1206 . DOI: 10.7527/S1000-6893.2015.0140

Abstract

A concurrent optimization model with respect to sound power is proposed to find optimal configurations of structure and material based on the homogenization method. A two-scale topology optimization study for minimum sound radiation power is presented to deal with the problem of structural-acoustic optimization of sandwich structures. The sensitivities of radiated acoustic power with respect to design variables for macrostructure and material microstructure are obtained and an optimization of sandwich structures of a porous core is realized by method of moving asympopte (MMA) optimization scheme. Numerical results validate the optimization model and demonstrate that optimization not only change principal mode shapes and natural frequencies' sequence of initial structure but also change the excited mode of vibrations. In addition, the influences of excitation frequency and volume fraction on the optimal configurations are investigated and a particular phenomenon is discussed.

参考文献

[1] SIGMUND O. Materials with prescribed constitutive parameters:An inverse homogenization problem[J]. International Journal of Solids and Structures, 1994, 31(17):2313-2329.
[2] SIGMUND O. Tailoring materials with prescribed elastic properties[J]. Mechanics of Materials, 1995, 20(4):351-368.
[3] FUJⅡ D, CHEN B C, KIKUCHI N. Composite material design of two-dimensional structures using the homogenization design method[J]. International Journal for Numerical Methods in Engineering, 2001, 50(9):2031-2051.
[4] RODRIGUES H, GUEDES J M, BENDSOE M P. Hierarchical optimization of material and structure[J]. Structural and Multidisciplinary Optimization, 2002, 24(1):1-10.
[5] COELHO P G, FERNANDES P R, GUEDES J M, et al. A hierarchical model for concurrent material and topology optimization of three-dimensional structures[J]. Structural and Multidisciplinary Optimization, 2008, 35(2):107-115.
[6] LIU L, YAN J, CHENG G. Optimum structure with homogeneous optimum truss-like material[J]. Computers & Structures, 2008, 86(13):1417-1425.
[7] YAN J, CHENG G, LIU L. A uniform optimum material based model for concurrent optimization of thermoelastic structures and materials[J]. International Journal for Simulation and Multidisciplinary Design Optimization, 2008, 2(4):259-266.
[8] NIU B, YAN J, CHENG G. Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency[J]. Structural and Multidisciplinary Optimization, 2009, 39(2):115-132.
[9] HUANG X, ZHOU S W, XIE Y M, et al. Topology optimization of microstructures of cellular materials and composites for macrostructures[J]. Computational Materials Science, 2013, 67:397-407.
[10] YAN X, HUANG X, ZHA Y, et al. Concurrent topology optimization of structures and their composite microstructures[J]. Computers & Structures, 2014, 133:103-110.
[11] ZUO Z H, HUANG X, RONG J H, et al. Multi-scale design of composite materials and structures for maximum natural frequencies[J]. Materials & Design, 2013, 51:1023-1034.
[12] KATO J, YACHI D, TERADA K, et al. Topology optimization of micro-structure for composites applying a decoupling multi-scale analysis[J]. Structural and Multidisciplinary Optimization, 2014, 49(4):595-608.
[13] ZHANG W, SUN S. Scale-related topology optimization of cellular materials and structures[J]. International Journal for Numerical Methods in Engineering, 2006, 68(9):993-1011.
[14] DENLI H, SUN J Q. Structural-acoustic optimization of sandwich structures with cellular cores for minimum sound radiation[J]. Journal of Sound and Vibration, 2007, 301(1):93-105.
[15] FRANCO F, CUNEFARE K A, RUZZENE M. Structural-acoustic optimization of sandwich panels[J]. Journal of Vibration and Acoustics, 2007, 129(3):330-340.
[16] FRANCO F, DE ROSA S, POLITO T. Finite element investigations on the vibro-acoustic performance of plane plates with random stiffness[J]. Mechanics of Advanced Materials and Structures, 2011, 18(7):484-497.
[17] DU J, OLHOFF N. Minimization of sound radiation from vibrating bi-material structures using topology optimization[J]. Structural and Multidisciplinary Optimization, 2007, 33(4-5):305-321.
[18] DU J, OLHOFF N. Topological design of vibrating structures with respect to optimum sound pressure characteristics in a surrounding acoustic medium[J]. Structural and Multidisciplinary Optimization, 2010, 42(1):43-54.
[19] YANG X W, LI Y M. Topology optimization to minimize the dynamic compliance of a bi-material plate in a thermal environment[J]. Structural and Multidisciplinary Optimization, 2013, 47(3):399-408.
[20] XU Z S, HUANG Q B, ZHAO Z G. Topology optimization of composite material plate with respect to sound radiation[J]. Engineering Analysis with Boundary Elements, 2011, 35(1):61-67.
[21] HASSANI B, HINTON E. A review of homogenization and topology optimization I-Homogenization theory for media with periodic structure[J]. Computers & Structures, 1998, 69(6):707-717.
[22] HASSANI B, HINTON E. A review of homogenization and topology opimization Ⅱ-Analytical and numerical solution of homogenization equations[J]. Computers & Structures, 1998, 69(6):719-738.
[23] HASSANI B, HINTON E. A review of homogenization and topology optimization Ⅲ-Topology optimization using optimality criteria[J]. Computers & Structures, 1998, 69(6):739-756.
[24] JOG C S. Topology design of structures subjected to periodic loading[J]. Journal of Sound and Vibration, 2002, 253(3):687-709.
[25] LARSEN A A, LAKSAFOSS B, JENSEN J S, et al. Topological material layout in plates for vibration suppression and wave propagation control[J]. Structural and Multidisciplinary Optimization, 2009, 37(6):585-594.
[26] NANDY A K, JOG C S. Optimization of vibrating structures to reduce radiated noise[J]. Structural and Multidisciplinary Optimization, 2012, 45(5):717-728.
[27] SVANBERG K. The method of moving asymptotes-A new method for structural optimization[J]. International Journal for Numerical Methods in Engineering, 1987, 24(2):359-373.
[28] YOON G H. Structural topology optimization for frequency response problem using model reduction schemes[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199:1744-1763.
[29] NORTON M P. Fundamentals of noise and vibration analysis for engineers[M]. 2nd ed. Cambridge:Cambridge University Press, 2003:213-216.

文章导航

/