流体力学与飞行力学

壁面抽吸条件下的爆震波传播特性

  • 苗世坤 ,
  • 周进 ,
  • 林志勇
展开
  • 国防科学技术大学 航天科学与工程学院, 长沙 410073
苗世坤,男,博士研究生。主要研究方向:高超声速推进技术。Tel:0731-84574756,E-mail:miaoshikun@nudt.edu.cn;周进,男,博士,教授。主要研究方向:高超声速推进技术、火箭及其组合推进技术、推进系统燃烧理论与燃烧诊断技术。Tel:0731-84574160-802,E-mail:zj706@vip.sina.com;林志勇,男,博士,副研究员。主要研究方向:爆震发动机基础与应用。Tel:0731-84574160-802,E-mail:linzy96@nudt.edu.cn

收稿日期: 2015-04-03

  修回日期: 2015-06-03

  网络出版日期: 2015-06-19

基金资助

国家自然科学基金(51206182,91441201,91441101)

Propagation characteristics of detonation wave influenced by wall suction

  • MIAO Shikun ,
  • ZHOU Jin ,
  • LIN Zhiyong
Expand
  • College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China

Received date: 2015-04-03

  Revised date: 2015-06-03

  Online published: 2015-06-19

Supported by

National Natural Science Foundation of China(51206182, 91441201, 91441101)

摘要

为研究静止气中壁面抽吸对爆震波传播特性的影响,采用数值模拟方法研究了多孔抽吸壁面条件下爆震波的流场结构、传播速度等特性的变化规律。结果表明多孔抽吸壁面对爆震波传播特性有两方面的影响。首先,流场与多孔壁面发生碰撞产生弧形激波,弧形激波对爆震波的横波结构造成直接破坏,导致靠近多孔壁面区域的爆震波产生明显的速度亏损,爆震波强度削弱甚至熄爆;其次,多孔壁面作用导致了流场不稳定性增强,流场与孔板碰撞产生高温高压点,对爆震波的传播有促进作用,尤其在临界条件下,可能导致爆震波熄爆后重新起爆。在保持抽吸压力和边界条件不变情况下,对不同活性及不同抽吸距离时的爆震波传播特性进行研究,发现预混气活性降低、抽吸距离增长时,爆震波结构和传播速度受壁面抽吸影响增强。在加长抽吸距离条件下,随着预混气活性的降低,存在3种爆震波传播现象,即自持传播、熄爆后重新起爆以及完全熄爆。将相应工况下的实验研究与数值模拟结果进行对比,验证了数值模拟结果的正确性。

本文引用格式

苗世坤 , 周进 , 林志勇 . 壁面抽吸条件下的爆震波传播特性[J]. 航空学报, 2016 , 37(3) : 854 -864 . DOI: 10.7527/S1000-6893.2015.0158

Abstract

In order to investigate the characteristics of the detonation influenced by porous wall suction, the structure and velocity of the detonation waves are studied by means of numerical simulation, which shows that there exit two kinds of effects on detonation. On the one hand, part of flowfield is sucked into the suction chamber, colliding with the porous wall, with a series of arc shocks being formed. The interaction of arc shocks and tranverse waves leads to the attenuation of transvers waves and even failure of detonation. On the other hand, instability of the flowfield is enhanced, and there is a series of hot spots formed during the collision between flowfiled and porous wall, which may promote the detonation, especially in the critical state and reignition may occur. Different activity and distance are investigated, while the boundary conditions and initial state remain the same. The results show that, as the activity decreases and the distance increases, the influence of porous wall suction becomes stronger. When the suction distance is longer, three phenomena of propagation are observed with the decrease of the activity of mixture:self-sustained detonation, reignition after failure and complete failure. Finally, the corresponding experiments are conducted and the results of numerical simulation are validated.

参考文献

[1] LEE J H S. The detonation phenonmenon[M]. Cambridge:Cambridge University Press, 2008.
[2] TEODORCZYK A, LEE J H S. Detonation attenuation by foams and wire meshes lining the walls[J]. Shock Waves, 1995, 4:225.
[3] TEODORCZYK A, LEE J H S, KNYSTAUTAS R. Photographic studies of the structure and propagation mechanisms of quasi-detonations in a rough tube[C]//12th International Colloquium on the Dynamics of Explosions and Reactive Systems, 1989.
[4] CHAPMAN D L V I. On the rate of explosion in gases[J]. The London Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1899, 47(284):90-104.
[5] JOUGUET E. On the propagation of chemical reactions in gases[J]. Journal de Mathematique Pures et Appliquees, 1905, 1(347-425):2.
[6] 李牧, 严传俊, 王治武, 等. 障碍物强化爆震起爆和传播的数值模拟与验证[J]. 西北工业大学学报, 2006, 24(3):299-303. LI M, YAN C J, WANG Z W, et al. Numerical simulation of and experimental study on effect of ring obstacles on detonation initiation and propagation[J]. Journal of Northwestern Polytechnical University, 2006, 24(3):299-303(in Chinese).
[7] 韩启祥, 张义宁, 侯晓静. 障碍物对激波触发爆震波影响的数值研究[J]. 推进技术, 2009, 30(2):213-218. HAN Q X, ZHANG Y N, HOU X J. Numerical investigation of obstacle influence on detomation initiation via shock[J]. Journal of Propulsion and Technology, 2009, 30(2):213-218(in Chinese).
[8] DUPRE G, PERALDI O, LEE J H S, et al. Propagation of detonation waves in an acoustic absorbing walled tube[J]. Progress in Astrinautics and Aeronautics, 1988, 114:148-263.
[9] RADULESCU M I, LEE J H S. The failure mechanism of gaseous detonations:Experiments in porous wall tubes[J]. Combustion and Flame, 2002, 131(1):29-46.
[10] MANSON N, GUENOCHE H. Effect of charge diameter on the velocity of detonation wave in gas mixtures[J]. Symposium(International) on Combustion, 1957, 6(1):613-639.
[11] XENOS M, TZIRTZILAKIS E, KAFOUSSIAS N. Compressible turbulent boundary layer flow control over a wedge[C]//Proceeding of the 2nd International Conference from Scientific Computing to Computational Engineering,2006.
[12] LAOUAR A, MEZZACHE E H. Numerical study of the effect of parietal suction and injection on momentum and heat transfer of laminar and turbulent external flow[J]. Energy Procedia, 2013, 36:1101-1110.
[13] 梁德旺, 钱华俊. 抽吸孔板的气动实验及附面层抽吸数值模拟[J]. 航空学报, 2002, 23(6):512-516. LIANG D W, QIAN H J. Experimental investigation of aerodynamic characteristics of porous plates and numerical simulation of boundary layer suction[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(6):512-516(in Chinese).
[14] 袁化成,梁德旺. 抽吸对高超声速进气道起动能力的影响[J]. 推进技术, 2006, 27(6):525-528. YUAN H C, LIANG D W. Effect of suction on starting of hypersonic inlet[J]. Journal of Propulsion and Technology, 2006, 27(6):525-528(in Chinese).
[15] VASIL'EV A A. Near-limiting detonation in channels with porous walls[J]. Combustion, Explision and Shock Waves, 1994, 30(1):101-106.
[16] GUO C, THOMAS G, LI J, et al, Experimental study of gaseous detonation pripagation over acoustically absorbing walls[J]. Shock Waves, 2002, 11:353-359.
[17] RADULESCU M I. The propagation and failure mechanisn of detonaitions:Experiments in porous-wall tubes[D]. Montreal:McGill University, 2003.
[18] ZEL'DOVICH Y B. To the question about energy use of detonation combustion[J]. Journal of Propulsion and Power, 2006, 22(3):588-592.
[19] VON NEUMANN J. Theory of detonation waves[R]. Princeton:Institute for Aavanced Study, 1942.
[20] HU X Y, KHOO B C, ZHAGN D L, et al. The cellular structure of a two-dimensional H2/O2/Ar detonation wave[J]. Combustion Theory and Modeling, 2004, 8(2):339-359.
[21] 林志勇. 高静温超声速预混气爆震起爆与发展过程机理研究[D]. 长沙:国防科学技术大学, 2008. LIN Z Y. Research on detonation initiation and development mechanisms in elevated temperature supersonic premixed mixture[D].Changsha:National University of Defense Technology, 2008(in Chinese).

文章导航

/