固体力学与飞行器总体设计

复杂结构部件概率疲劳寿命预测方法与模型

  • 谢里阳 ,
  • 任俊刚 ,
  • 吴宁祥 ,
  • 钱文学
展开
  • 东北大学 航空动力装备振动及控制实验室, 沈阳 110819
任俊刚 男, 博士研究生。主要研究方向: 机械疲劳强度与可靠性。Tel: 024-83678622 E-mail: renjungang1314@163.com;吴宁祥 男, 博士, 讲师。主要研究方向: 机械疲劳强度与可靠性。Tel: 024-83683853 E-mail: nxwu@me.neu.edu.cn;钱文学 男, 博士, 副教授。主要研究方向:机械疲劳强度与可靠性。Tel: 024-83683853 E-mail: wxqian@me.neu.edu.cn

收稿日期: 2015-04-13

  修回日期: 2015-04-15

  网络出版日期: 2015-06-03

基金资助

国家自然科学基金(51175072, 51335003); 高等学校博士学科点专项科研基金(20110042130003)

Probabilistic fatigue life prediction method and modeling for complex structural parts

  • XIE Liyang ,
  • REN Jungang ,
  • WU Ningxiang ,
  • QIAN Wenxue
Expand
  • Key Laboratory of Aero Power Equipment Vibration and Control, Northeastern University, Shenyang 110819, China

Received date: 2015-04-13

  Revised date: 2015-04-15

  Online published: 2015-06-03

Supported by

National Natural Science Foundation of China (51175072, 51335003); Specialized Research Fund for the Doctoral Program of Higher Education of China (20110042130003)

摘要

针对多部位损伤(MSD)复杂结构部件的疲劳寿命预测问题,通过定义损伤临界值随机变量,分析、讨论了寿命概率分布、损伤概率分布、损伤临界值概率分布的属性及其之间的关系,研究了概率损伤累积原理,提出确定累积损伤临界值概率分布的方法,建立了概率累积损伤准则。基于多层次统计分析技术和系统层可靠性建模原理,构建了复杂结构部件的概率寿命预测模型;通过各关键部位的损伤累积和结构系统的失效概率计算,实现了复杂结构部件概率疲劳寿命预测,通过典型算例展示了方法及模型的应用。

本文引用格式

谢里阳 , 任俊刚 , 吴宁祥 , 钱文学 . 复杂结构部件概率疲劳寿命预测方法与模型[J]. 航空学报, 2015 , 36(8) : 2688 -2695 . DOI: 10.7527/S1000-6893.2015.0109

Abstract

Aimed at the probabilistic fatigue life prediction of multi-site damage (MSD) structural components, critical damage random variable is defined, the properties of life distribution, damage distribution and critical damage distribution are analyzed, and the relationship between these distribution functions are discussed. Besides, the present paper investigates probabilistic cumulative damage principle, presents a method to determine the probability density function of critical damage and develops probabilistic cumulative damage rule. Probabilistic fatigue life prediction model of MSD structural components is established based on multi-level statistics and system-level reliability modeling technique. Probabilistic fatigue life of an MSD structural component can be predicted through cumulative damage calculation of each damage site and the calculation of system failure probability. A case study is provided to illustrate the application of the method and related model.

参考文献

[1] Silva L F M, Goncalves J P M, Oliveira F M F, et al. Multiple-site damage in riveted lat-joints: Experimental simulation and finite element prediction[J]. International Journal of Fatigue, 2000, 22(4): 319-338.
[2] Mkaddem A, Mansori M E. An equivalent ellipse method to analyze the fatigue behavior following 'multi-surface initiations'[J]. International Journal of Mechanical Sciences, 2010, 52(9): 1125-1135.
[3] Jones R, Molent L, Pitt S. Study of multi-site damage of fuselage lap joints[J]. Theoretical and Applied Fracture Mechanics, 1999, 32(2): 81-100.
[4] Park J H, Singh R, Pyo C R, et al. Integrity of aircraft structural elements with multi-site fatigue damage[J]. Engineering Fracture Mechanics, 1995, 51(3): 361-380.
[5] Lee H, Kim N. Fatigue life prediction of multi-spot-welded panel structures using an equivalent stress intensity factor[J]. International Journal of Fatigue, 2004, 26(4): 403-412.
[6] Salvini P, Vivio F, Vullo V. Fatigue life evaluation for multi-spot welded structures[J]. International Journal of Fatigue, 2009, 31(1): 122-129.
[7] Wang X, Modarres M, Hoffman P. Analysis of crack interactions at adjacent holes and onset of multi-site fatigue damage in aging airframes[J]. International Journal of Fracture, 2009, 156(2): 155-163.
[8] Park J H, Atluri S N. Fatigue growth of multiple-cracks near a row of fastener-holes in a fuselage lap-joint[J]. Computational Mechanics, 1993, 13(3): 189-203.
[9] O'Donoghue P E, Atluri S N, Pipkins D S. Computational strategies for fatigue crack growth in three dimensions with application to aircraft components[J]. Engineering Fracture Mechanics, 1995, 52(1): 51-64.
[10] Markiewicz I. Analysis of hole arrangement in tensile plate by means of the SADSF method and fatigue life predictions[J]. Maintenance and Reliability, 2009, 43(3): 24-31.
[11] Zhao J M, Chan A H C, Roberts C, et al. Reliability evaluation and optimization of imperfect inspections for a component with multi-defects[J]. Reliability Engineering and System Safety, 2007, 92(1): 65-73.
[12] Proppe C. Probabilistic analysis of multi-site damage in aircraft fuselages[J]. Computational Mechanics, 2003, 30(4): 323-329.
[13] Lambert S, Pagnacco E, Khalij L. A probabilistic model for the fatigue reliability of structures under random loadings with phase shift effects[J]. International Journal of Fatigue, 2010, 32(2): 463-474.
[14] Ni K, Mahadevan S. Strain-based probabilistic fatigue life prediction of spot-welded joints[J]. International Journal of Fatigue, 2004, 26(7): 763-772.
[15] Murty A S R, Gupta U C, Krishna A R. A new approach to fatigue strength distribution for fatigue reliability evaluation[J]. International Journal of Fatigue, 1995, 17(2): 85-89.
[16] Zhang D, Hong J, Ma Y, et al. A probability method for prediction on high cycle fatigue of blades caused by aerodynamic loads[J]. Advances in Engineering Software, 2011, 42(12): 1059-1073.
[17] Petryna Y S, Pfanner D, Stangenberg F, et al. Reliability of reinforced concrete structures under fatigue[J]. Reliability Engineering and System Safety, 2002, 77(3): 253-261.
[18] Karadeniz H. Uncertainty modeling in the fatigue reliability calculation of offshore structures[J]. Reliability Engineering and System Safety, 2002, 74(3): 323-335.
[19] Kliman V. Fatigue life estimation under random loading using the energy criterion[J]. International Journal of Fatigue, 1985, 7(1): 39-44.
[20] Xie L Y, Zhou J Y, Wang Y Y, et al. Load-strength order statistics interference models for system reliability evaluation[J]. International Journal of Performability Engineering, 2005, 1(1): 23-36.

文章导航

/