[1] Silva L F M, Goncalves J P M, Oliveira F M F, et al. Multiple-site damage in riveted lat-joints: Experimental simulation and finite element prediction[J]. International Journal of Fatigue, 2000, 22(4): 319-338.
[2] Mkaddem A, Mansori M E. An equivalent ellipse method to analyze the fatigue behavior following 'multi-surface initiations'[J]. International Journal of Mechanical Sciences, 2010, 52(9): 1125-1135.
[3] Jones R, Molent L, Pitt S. Study of multi-site damage of fuselage lap joints[J]. Theoretical and Applied Fracture Mechanics, 1999, 32(2): 81-100.
[4] Park J H, Singh R, Pyo C R, et al. Integrity of aircraft structural elements with multi-site fatigue damage[J]. Engineering Fracture Mechanics, 1995, 51(3): 361-380.
[5] Lee H, Kim N. Fatigue life prediction of multi-spot-welded panel structures using an equivalent stress intensity factor[J]. International Journal of Fatigue, 2004, 26(4): 403-412.
[6] Salvini P, Vivio F, Vullo V. Fatigue life evaluation for multi-spot welded structures[J]. International Journal of Fatigue, 2009, 31(1): 122-129.
[7] Wang X, Modarres M, Hoffman P. Analysis of crack interactions at adjacent holes and onset of multi-site fatigue damage in aging airframes[J]. International Journal of Fracture, 2009, 156(2): 155-163.
[8] Park J H, Atluri S N. Fatigue growth of multiple-cracks near a row of fastener-holes in a fuselage lap-joint[J]. Computational Mechanics, 1993, 13(3): 189-203.
[9] O'Donoghue P E, Atluri S N, Pipkins D S. Computational strategies for fatigue crack growth in three dimensions with application to aircraft components[J]. Engineering Fracture Mechanics, 1995, 52(1): 51-64.
[10] Markiewicz I. Analysis of hole arrangement in tensile plate by means of the SADSF method and fatigue life predictions[J]. Maintenance and Reliability, 2009, 43(3): 24-31.
[11] Zhao J M, Chan A H C, Roberts C, et al. Reliability evaluation and optimization of imperfect inspections for a component with multi-defects[J]. Reliability Engineering and System Safety, 2007, 92(1): 65-73.
[12] Proppe C. Probabilistic analysis of multi-site damage in aircraft fuselages[J]. Computational Mechanics, 2003, 30(4): 323-329.
[13] Lambert S, Pagnacco E, Khalij L. A probabilistic model for the fatigue reliability of structures under random loadings with phase shift effects[J]. International Journal of Fatigue, 2010, 32(2): 463-474.
[14] Ni K, Mahadevan S. Strain-based probabilistic fatigue life prediction of spot-welded joints[J]. International Journal of Fatigue, 2004, 26(7): 763-772.
[15] Murty A S R, Gupta U C, Krishna A R. A new approach to fatigue strength distribution for fatigue reliability evaluation[J]. International Journal of Fatigue, 1995, 17(2): 85-89.
[16] Zhang D, Hong J, Ma Y, et al. A probability method for prediction on high cycle fatigue of blades caused by aerodynamic loads[J]. Advances in Engineering Software, 2011, 42(12): 1059-1073.
[17] Petryna Y S, Pfanner D, Stangenberg F, et al. Reliability of reinforced concrete structures under fatigue[J]. Reliability Engineering and System Safety, 2002, 77(3): 253-261.
[18] Karadeniz H. Uncertainty modeling in the fatigue reliability calculation of offshore structures[J]. Reliability Engineering and System Safety, 2002, 74(3): 323-335.
[19] Kliman V. Fatigue life estimation under random loading using the energy criterion[J]. International Journal of Fatigue, 1985, 7(1): 39-44.
[20] Xie L Y, Zhou J Y, Wang Y Y, et al. Load-strength order statistics interference models for system reliability evaluation[J]. International Journal of Performability Engineering, 2005, 1(1): 23-36. |