基于RIPless理论的层析SAR成像航迹分布优化方法
收稿日期: 2015-01-21
修回日期: 2015-05-10
网络出版日期: 2015-05-25
基金资助
中国科学院创新团队国际合作伙伴计划
Track distribution optimization method based on TomoSAR via RIPless theory
Received date: 2015-01-21
Revised date: 2015-05-10
Online published: 2015-05-25
Supported by
CAS/SAFEA International Partnership Program for Creative Research Team
层析合成孔径雷达成像(TomoSAR)是通过同一观测区域不同入射角的多幅二维合成孔径雷达(SAR)图像在高程向进行孔径合成,从而实现三维成像。近年来,压缩感知(CS)被用于高程向稀疏场景的重建,高程向重建质量取决于观测矩阵的性质,而航迹分布是影响观测矩阵重构性能的重要因素。相比于度量观测矩阵重构性能的其他约束条件,RIPless理论具有有效、直观和计算简单等优点。提出了一种基于RIPless理论的压缩感知层析SAR成像航迹分布优化准则,从而在航迹数目一定的情况下,获取最优分布以实现高程向优化重建。最后,通过仿真和实验验证了所提优化准则的有效性。
关键词: 层析合成孔径雷达成像; 压缩感知; RIPless理论; 观测矩阵; 航迹优化
毕辉 , 张冰尘 , 洪文 . 基于RIPless理论的层析SAR成像航迹分布优化方法[J]. 航空学报, 2016 , 37(2) : 680 -687 . DOI: 10.7527/S1000-6893.2015.0131
Synthetic aperture radar tomography(TomoSAR) applies measured repeat-pass SAR images to synthetize an aperture in the elevation direction, so as to achieve three-dimensional imaging. In recent years, compressive sensing(CS) has been used for elevation reconstruction for the sparse elevation distribution. The imaging quality of elevation of CS-based TomoSAR depends on the recovery property of measurement matrix, which is affected by the track distribution. Compared to other restrictions of recovery property for measurement matrix, RIPless theory is intuitionistic, effective and simple to calculate. In this paper, we propose a track distribution optimal criterion for CS-based TomoSAR via RIPless theory to optimize the distribution of flight tracks and achieve optimal reconstruction of elevation when the number of tracks is fixed. Simulation and experimental results validate the validity of the proposed optimization criterion.
[1] REIGBER A, MOREIRA A. First demonstration of airborne SAR tomography using multibaseline L-band data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2142-2152.
[2] FORNARO G, LOMBARDINI F, SERAFINO F. Three-dimensional focusing multipass data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(3):507-517.
[3] FORNARO G, LOMBARDINI F, SERAFINO F. Three-dimensional multipass SAR focusing:Experiments with long-term spaceborne data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4):702-714.
[4] LOMBARDINI F, MONTANARI M, GINI F. Reflecitivity estimation for multibaseline interferometric radar imaging of layover extended sources[J]. IEEE Transactions on Signal Processing, 2003, 51(6):1508-1519.
[5] BAMLER R, HARTL P. Synthetic aperture radar interferoetry[J]. Inverse Problem, 1998, 14(4):1-54.
[6] GABRIEL A, GOLDSTEIN R. Crossed orbit interferometry:Theory and experimental results from SIR-B[J]. International Journal of Remote Sensing, 1988, 9(5):857-872.
[7] 胡庆东, 毛士艺. 干涉合成孔径雷达基线的估计[J]. 航空学报, 1998, 19(S1):20-24. HU Q D, MAO S Y. Estimation of interferometric SAR baseline[J]. Acta Aeronoutica et Astronautica Sinica, 1998, 19(S1):20-24(in Chinese).
[8] DONOHO D. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.
[9] CANDES E J, TAO T. Near-optimal signal recovery from random projections:Universal encoding strategies[J]. IEEE Transactions on Information Theory, 2006, 52(12):5406-5425.
[10] CANDES E, ROMBERG J, TAO T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8):1207-1223.
[11] BUDILLON A, EVANGELISTA A, SCHIRINZI G. SAR tomography from sparse samples[C]//International Geoscience and Remote Sensing Symposium, 2009:865-868.
[12] ZHU X, BAMLER R. Very high resolution spaceborne SAR tomography in urban environment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(12):4296-4308.
[13] ZHU X, BAMLER R. Tomographic SAR inversion L1-norm regularization-the compressive sensing approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(10):3939-3846.
[14] CANDES E, TAO T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12):4203-4215.
[15] CANDES E, PLAN Y. A probabilistic and RIPless theory of compressed sensing[J]. IEEE Transactions on Information Theory, 2011, 57(11):7235-7254.
[16] KUENG R, GROSS D. RIPless compressed sensing from anisotropic measurements[J]. Linear Algebra and its Applications, 2014, 441:110-123.
[17] ZHANG B C, HONG W, WU Y R. Sparse microwave imaging:principles and applications[J]. Science China Information Sciences, 2012, 55(8):1722-1754.
[18] 赵曜, 张冰尘, 洪文, 等. 基于RIPless理论的稀疏微波成像波形分析方法[J]. 雷达学报, 2013, 2(3):265-270. ZHAO Y, ZHANG B C, HONG W, et al. RIPless based radar waveform analysis in sparse microwave imaging[J]. Journal of Radars, 2013, 2(3):265-270(in Chinese).
[19] HORN R. The DLR airborne SAR project E-SAR[C]//International Geoscience and Remote Sensing Symposium, 1996:1624-1628.
[20] HAJNSEK, I, SCHEIBER R, ULANDER L, et al. BioSAR 2007:Technical assistance for the development of airborne SAR and geophysical measurements during the BioSAR 2007 experiment[R]. Oberpfaffenhofen:DLR, 2008.
/
〈 | 〉 |