开缝空腔抑制翼型跨声速抖振的数值模拟
收稿日期: 2015-03-01
修回日期: 2015-05-04
网络出版日期: 2015-05-12
基金资助
解放军总装备部预研基金(9140C420301110C42)
Numerical simulation of transonic airfoil buffet suppression with slotted cavity
Received date: 2015-03-01
Revised date: 2015-05-04
Online published: 2015-05-12
Supported by
The Preliminary Research Fund of the General Reserve Department of PLA(9140C420301110C42)
周伟 , 张正科 , 屈科 , 翟琪 . 开缝空腔抑制翼型跨声速抖振的数值模拟[J]. 航空学报, 2016 , 37(2) : 451 -460 . DOI: 10.7527/S1000-6893.2015.0121
The unsteady Reynolds average Navier-Stokes(URANS) method is used to compute the transonic buffet, the shock oscillations and the evolution of flow structures of 18% thick biconvex circular-arc airfoil. The suppression effects of passive control with different configurations on transonic airfoil buffet are investigated by numerical method. The computational results reveal that the self-sustained shock oscillation on 18% thick biconvex circular-arc airfoil at transonic speeds has only forward motion without noticeable backward motion. A cavity with ventilating slots, as a passive control measure, can alleviate transonic buffet, but has little influence on the buffet frequency. Deeper cavity has greater effect of suppression but the variation of the cavity depth does not influence the buffet frequency. The suppression effects between 2-slot, 3-slot and 4-slot cavities are insignificant and the number of slots has little influence on the buffet frequency.
Key words: transonic; buffet; shock oscillation; cavity; suppression
[1] TIJDEMAN H. Investigation of transonic flow around oscillating airfoils:NLR TR 77090 U[R]. Netherlands:National Aerospace Laboratory, 1977.
[2] MCDEVITT J B, LEVY L L, JR, DEIWERT G S. Transonic flow past a thick circular-arc airfoil[J]. AIAA Journal, 1976, 14(5):606-613.
[3] MCDEVITT J B. Supercritical flow about a thick circular-arc airfoil:NASA-TM-78549[R]. Washington, D.C.:NASA, 1979.
[4] LEE B H K. Self-sustained shock oscillations on airfoils at transonic speeds[J]. Progress in Aerospace Sciences, 2001, 37(2):147-196.
[5] GILLAN M. Navier-Stokes simulation of self-excited shock induced oscillations:AIAA-1995-1809[R]. Reston:AIAA, 1995.
[6] BARTELS R E. Computation of shock buffet onset for a conventional and supercritical airfoil:AIAA-1997-0833[R]. Reston:AIAA, 1997.
[7] RAGHUNATHAN S, GILLAN M A, COOPER R K, et al. Shock oscillations on biconvex aerofoils[J]. Aerospace Science and Technology, 1999, 3(1):1-9.
[8] DECK S. Numerical simulation of transonic buffet over a supercritical airfoil[J]. AIAA Journal, 2005, 43(7):1556-1566.
[9] THIEDE P, KROGMANN P, STANEWSKY E. Active and passive shock/boundary layer interaction control on supercritical airfoils:AGARD-CP-365[R]. Brussels:AGARD, 1984.
[10] GIBB J. The cause and cure of periodic flows at transonic speeds[C]//Proceedings 16th Congress of the International Council of the Aeronautical Sciences, 1988:1522-1530.
[11] CARUANA D, CORREGE M, REBERGA O, et al. Buffet and buffeting active control:AIAA-2000-2069[R]. Reston:AIAA, 2000.
/
〈 | 〉 |