流体力学与飞行力学

圆形出口内转式进气道流动特征

  • 王卫星 ,
  • 郭荣伟
展开
  • 1. 南京航空航天大学能源与动力学院江苏省航空动力系统重点实验室, 南京 210016;
    2. 中国空气动力研究与发展中心超高速空气动力研究所高超声速冲压发动机技术重点实验室, 绵阳 621000
郭荣伟,男,学士,教授,博士生导师。主要研究方向:内流空气动力学、电磁隐身。Tel:025-84892444,E-mail:guoweifang@nuaa.edu.cn

收稿日期: 2015-01-28

  修回日期: 2015-04-19

  网络出版日期: 2015-05-05

基金资助

高超声速冲压发动机技术重点实验室开放基金(STSKFKT2014002)

Flow characteristics of an inward turning inlet with circular outlet

  • WANG Weixing ,
  • GUO Rongwei
Expand
  • 1. Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. Science and Technology on Scramjet Laboratory, Hypervelocity Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2015-01-28

  Revised date: 2015-04-19

  Online published: 2015-05-05

Supported by

Open Fund of Science and Technology on Scramjet Laboratory(STSKFKT2014002)

摘要

采用数值仿真的方法研究了内转式进气道的流动特征。研究表明:设计状态在近壁面唇罩激波诱发了二次流,进而发展形成流向涡,造成低能流堆积,隔离段出口流场分布不均,消弱了进气道的抗反压能力。有攻角条件下,口面激波偏离唇罩前缘,激波形态发生改变,激波波面中部展向具有准二维特性,压缩面两侧气流压缩变弱,激波层变薄,出现局部膨胀区;有攻角条件下的无黏流场,在进气道压缩段形成三维流向涡,该流向涡促进高能高速气流向壁面迁移,改善了黏性条件下隔离段出口流场的均匀度。

本文引用格式

王卫星 , 郭荣伟 . 圆形出口内转式进气道流动特征[J]. 航空学报, 2016 , 37(2) : 533 -544 . DOI: 10.7527/S1000-6893.2015.0108

Abstract

The flow characteristics of an inward turning inlet are numerically studied. The results show that at design condition, the secondary flow near the wall is induced by the cowl shock and the streamwise vortex is generated in isolator, which will cause the flow with low velocity and low total pressure to accumulate. The distribution of the aerodynamic parameters at the isolator outlet is even, which will weaken the back-pressure capacity of inlet. With angle of attack, the compression shock departs the leading edge of cowl lip and the shock wave structure changes. The middle part of the shock wave presents quasi-two-dimensional feature in the span-wise. The shock wave is weak on the two sides of compression surface and the expansion waves occur in local zone. The streamwise vortex presents in the compression section without viscosity with angle of attack, and this streamwise vortex will enhance the transfer of the flow with high total pressure from the core flow region to the wall, so the evenness of flow at the outlet of isolator is improved under viscosity.

参考文献

[1] TAN H J, GUO R W. Experimental study of the unstable-unstarted condition of a hypersonic inlet at Mach 6[J]. Journal of Propulsion and Power, 2007, 23(4):783-788.
[2] BARBER T J, HIETT D, FASTENBERG S. CFD modeling of the hypersonic inlet starting problem:AIAA-2006-123[R]. Reston:AIAA, 2006.
[3] BOON S, HILLIER R. Mach 6 hypersonic inlet flow analysis at incidence:AIAA-2006-3036[R]. Reston:AIAA, 2006.
[4] 袁化成, 郭荣伟. 矩形截面高超声速进气道气动设计及试验验证[J]. 南京航空航天大学学报, 2009, 41(4):423-428. YUAN H C, GUO R W. Design and experimental verification of hypersonic inlet with rectangular section[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2009, 41(4):423-428(in Chinese).
[5] BILLIG F S. SCRAM-A supersonic combustion ramjet missile:AIAA-1993-2329[R]. Reston:AIAA, 1993.
[6] VAN WIE D, MOLDER S. Applications of Busemann inlet designs for flight at hypersonic speeds:AIAA-1992-1210[R]. Reston:AIAA, 1992.
[7] MALO F J, GAITONDE D V. Numerical investigation of an innovative inward turning inlet:AIAA-2005-4871[R]. Reston:AIAA, 2005.
[8] MALO F J, GAITONDE D V. Analysis of an innovative inward turning inlet using an Air-JP8 combustion mixture at Mach 7:AIAA-2006-3041[R]. Reston:AIAA, 2006.
[9] SMART M K, TREXLER C A. Mach 4 performance of a fixed-geometry hypersonic inlet with rectangular-to-ellipitical shape transition:AIAA-2007-0026[R]. Reston:AIAA, 2007.
[10] SMART M K, WHITE J A. Computational investigation of the performance and back-pressure limits of a hypersonic inlet:AIAA-2002-0508[R]. Reston:AIAA, 2002.
[11] SMART M K. Experimental testing of a hypersonic inlet with rectangular-to-elliptical shape transition:AIAA-1999-0085[R]. Reston:AIAA, 1999.
[12] YOU Y C, LIANG D W, HUANG G P. Cross section controllable hypersonic inlet design using streamline tracing and osculating axisymmetric concepts:AIAA-2007-5379[R]. Reston:AIAA, 2007.
[13] YOU Y C, LIANG D W, GUO R W. Numerical research of three-dimensional sections controllable internal waverider hypersonic inlet:AIAA-2008-4708[R]. Reston:AIAA, 2008.
[14] YOU Y C, LIANG D W, GUO R W, et al. High enthalpy wind tunnel tests of three-dimensional section controllable internal waverider hypersonic inlet:AIAA-2009-0009[R]. Reston:AIAA, 2009.
[15] MATTHEWS A J, JONES T V. Design and test of a modular waverider hypersonic intake:AIAA-2005-2279[R]. Reston:AIAA, 2005.
[16] WALKER S H, RODGERS F, ESPOSITA A L. Hypersonic collaborative Australia/United States experiment(HYCAUSE):AIAA-2005-3254[R]. Reston:AIAA, 2005.
[17] WALKER S H, RODGERS F. Falcon hypersonic technology overview:AIAA-2005-3253[R]. Reston:AIAA, 2005.
[18] 孙波, 张堃元, 金志光, 等. 流线追踪Busemann进气道设计参数的选择[J]. 推进技术, 2007, 28(1):55-59. SUN B, ZHANG K Y, JIN Z G, et al. Selection of design parameters for stream traced hypersonic Busemann inlets[J]. Journal of Propulsion Technology, 2007, 28(1):55-59(in Chinese).
[19] 孙波, 张堃元. Busemann进气道风洞试验及数值研究[J]. 推进技术, 2006, 27(1):58-60. SUN B, ZHNAG K Y. Experimental investigation and numerical simulation[J]. Journal of Propulsion Technology, 2006, 27(1):58-60(in Chinese).
[20] 孙波, 张堃元, 王成鹏, 等. Busemann进气道无粘流场数值分析[J]. 推进技术, 2005, 26(3):242-247. SUN B, ZHANG K Y, WANG C P, et al. Inviscid CFD analysics of hypersonic Busemann inlet[J]. Journal of Propulsion Technology, 2005, 26(3):242-247(in Chinese).
[21] 尤延铖, 梁德旺. 内乘波式进气道内收缩基本流场研究[J]. 空气动力学学报, 2008, 26(2):203-207. YOU Y C, LIANG D W. Investigation of internal compression flowfield for internal waverider-derived inlet[J]. Acta Aerodynamic Sinica, 2008, 26(2):203-207(in chinese).
[22] 贺旭照, 乐嘉陵, 宋文燕, 等. 基于轴对称喷管的三维内收缩进气道的是设计与初步评估[J]. 推进技术, 2010, 31(2):147-152. HE X Z, LE J L, SONG W Y, et al. 3D inward turning inlet design basing on axisymmetric nozzle and its preliminary assessment[J]. Journal of Propulsion Technology, 2010, 31(2):147-152(in Chinese).
[23] 南向军, 张堃元, 金志光. 基于反正切曲线压升规律设计高超内收缩进气道[J]. 航空动力学报, 2011, 26(11):2571-2577. NAN X J, ZHANG K Y, JIN Z G. Design of hypersonic inward turning inlets with basic flowfield using arc tangent curve law of pressure rise[J]. Journal of Aerospace Power, 2011, 26(11):2571-2577(in Chinese).
[24] 南向军, 张堃元, 金志光, 等. 矩形转圆形高超声速内收缩进气道数值及试验研究[J]. 航空学报, 2011, 32(6):988-996. NAN X J, ZHANG K Y, JIN Z G, et al. Numerical and experimental investigation of hypersonic inward turning inlets with rectangular to circular shape transition[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6):988-996(in Chinese).
[25] 李永洲, 张堃元, 南向军. 基于马赫数分布规律可控概念的高超声速内收缩进气道设计[J]. 航空动力学报, 2012, 27(11):2484-2491. LI Y Z, ZHANG K Y, NAN X J. Design of hypersonic inward turning inlets base on concept of controllable Mach number distribution[J]. Journal of Aerospace Power, 2012, 27(11):2484-2491(in Chinese).
[26] DRAYNA T W, NOMPELIS I, CANDLER G V. Hypersonic inward turning inlets:design and optimization:AIAA-2006-297[R]. Reston:AIAA, 2006.

文章导航

/