电子与控制

一种解决经验模态分解端点效应的边界延拓法

  • 苏东林 ,
  • 郑昊鹏
展开
  • 北京航空航天大学 电子信息工程学院, 北京 100083
苏东林,女,博士,教授,博士生导师。主要研究方向:电磁兼容理论与应用,射频微波电路与系统,新型飞行器载共形/共用/小型化天线。Tel:010-82317224,E-mail:sdl@buaa.edu.cn;郑昊鹏,男,博士研究生。主要研究方向:电磁兼容与电磁环境。Tel:010-82315274,E-mail:zmxyg@163.com

收稿日期: 2015-03-10

  修回日期: 2015-04-22

  网络出版日期: 2015-05-04

基金资助

国家自然科学基金(61427803,61221061)

A boundary extension method for empirical mode decomposition end effect

  • SU Donglin ,
  • ZHENG Haopeng
Expand
  • School of Electronics and Information Engineering, Beihang University, Beijing 100083, China

Received date: 2015-03-10

  Revised date: 2015-04-22

  Online published: 2015-05-04

Supported by

National Natural Science Foundation of China(61427803, 61221061)

摘要

用于电子设备或系统辐射发射趋势预测的数据大多呈现非线性、样本量小的特点,这大大增加了预测建模的难度,而经验模态分解(EMD)可以将非线性、非平稳的数据分解成若干个呈现一定周期性的本征模态函数(IMF),并且EMD具有完备性和正交性,可通过分别对分解得到的IMF分量建模,从而完成对原始数据的建模。但EMD被端点效应问题所困扰,为了提高EMD的分解精度,针对分解过程中的端点效应问题,以及辐射发射趋势预测的时间序列数据样本量小的特点,利用建立灰色均值GM(1,1)预测模型所需数据量小的优点,提出了一种基于灰色均值GM(1,1)预测模型的边界延拓方法,在原始数据两端各拓展一个极大值和一个极小值,对原始数据进行边界延拓,从而抑制EMD的端点效应。仿真对比结果表明:该方法在分解层数和平均相对误差方面均优于未经延拓处理的EMD,且对数据样本量要求不高。

本文引用格式

苏东林 , 郑昊鹏 . 一种解决经验模态分解端点效应的边界延拓法[J]. 航空学报, 2016 , 37(3) : 960 -969 . DOI: 10.7527/S1000-6893.2015.0111

Abstract

The data used for individual or systematic radiation emission prediction always has the features like non-linear regularity and small sample volume, which provide significant difficulties for accurate model establishment. However, by introducing the empirical mode decomposition(EMD) method, the non-linear and non-stationary data can be decomposed into several periodic intrinsic mode functions(IMF). The advantages of the EMD method including completeness and orthogonaity enable us to decompose the modeling of initial data into the modeling of IMFs components. However, due to the characteristics of the electromagnetic compatibility test data, EMD suffers from the end effect which limits its precision. In order to enhance the accuracy of EMD, this paper presents a novel approach which is based on the mean gray GM(1, 1) prediction model with end-point extension. Specifically, based on the fact that the data volume required by mean gray GM(1, 1) prediction model is relatively small, the maximum and minimum values are added at each end point of the initial data set respectively to suppress the end effect of EMD method. Simulation results indicate that decomposition layer number and the average relative error are optimized significantly. Furthermore, the required sample data volume can be reduced much significantly than the existing EMD methods.

参考文献

[1] KODALI V P. 工程电磁兼容[M]. 陈淑凤, 高攸刚, 苏东林,等译. 2版. 北京:人民邮电出版社, 2006:52-56. KODALI V P. Engineering electromagnetic compatibility:principles, measurements, technologies, and computer models[M]. CHEN S F, GAO Y G, SU D L, et al, translated. 2nd ed. Beijing:Posts & Telecom Press, 2006:52-56(in Chinese).
[2] 杨永峰, 吴亚锋. 经验模态分解在振动分析中的应用[M]. 北京:国防工业出版社, 2013:5-6. YANG Y F, WU Y F. Application of empirical mode decomposition in vibration analysis[M]. Beijing:National Defense Industry Press, 2013:5-6(in Chinese).
[3] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proceedings of the Royal Society of London Series A:Mathematical Physical and Engineering Sciences, 1998, 454:903-995.
[4] RILLING G, FLANDRIN P. One or two frequencies?The empirical mode decomposition answers[J]. IEEE Transactions on Singnal Processing, 2008, 56(1):85-95.
[5] RILLING G, FLANDRIN P. Empirical mode decomposition as a filter bangk[J]. IEEE Singnal Processing Letters, 2004, 11(2):112-114.
[6] FLANDRIN P. Empirical mode decomposition as data-driven wavelet-like expansions[J]. International Journal of Wavelets,Multiresolution and Information Processing, 2004, 2(4):1-20.
[7] RILLING G, FLANDRIN P. On the influence of sampling on the empirical mode decomposition[C]//2006 IEEE International Conference on Acoustics, Speech, and Signal Processing. Piscataway, NJ:IEEE Press, 2006:444-447.
[8] 杜爱明, 王彬, 杨润海. Hilbert-Huang变换中的一种端点处理方法[J]. 地震研究, 2007, 30(1):54-58. DU A M, WANG B, YANG R H. A boundary processing method in hilbert-huang transform[J]. Journal of Seismological Research, 2007, 30(1):54-58(in Chinese).
[9] 李海燕. 一种改善EMD端点效应的可行方法[J]. 中国新技术新产品, 2009(18):34-35. LI H Y. A feasible method to improve the EMD endpoint effect[J]. China New Technologies and Products, 2009(18):34-35(in Chinese).
[10] 盖强. 局部波时频分析方法的理论研究与应用[D]. 大连:大连理工大学, 2001:12-28. GAI Q. Research and application on the theory of local wave time-frequency analysis method[D]. Dalian:Dalian University of Technology, 2001:12-28(in Chinese).
[11] 王胜春. 自适应时频分析技术及其在故障诊断中的应用研究[D]. 济南:山东大学, 2007:30-52. WANG S C. Research on adaptive time-frequency analysis and its application to fault diagnosis[D]. Ji'nan:Shandong University, 2007:30-52(in Chinese).
[12] 钟佑明. 希尔伯特-黄变换局瞬信号分析理论的研究[D]. 重庆:重庆大学, 2002:6-21. ZHONG Y M. Research on the local-instantaneous signal analysis theory of the Hilbert-Huang transform[D]. Chong-qing:Chongqing University, 2002:6-21(in Chinese).
[13] 邓拥军, 王伟, 钱成春, 等. EMD方法及Hilbert变换中边界问题的处理[J]. 科学通报, 2001, 46(3):257-263. DENG Y J, WANG W, QIAN C C, et al. Comments and modifications on EMD method[J]. Chinese Science Bulletin, 2001, 46(3):257-263(in Chinese).
[14] 黄大吉, 赵进平, 苏纪兰. 希尔伯特-黄变换的边界延拓[J]. 海洋学报, 2003, 25(1):1-11. HUANG D J, ZHAO J P, SU J L. Practical implementation of the Hilbert-Huang transform algorithm[J]. Acta Oceanologica Sinica, 2003, 25(1):1-11(in Chinese).
[15] 刘慧婷, 张旻, 程家兴. 基于多项式拟合算法的EMD端点问题的处理[J]. 计算机工程与应用, 2004, 40(16):84-86. LIU H T, ZHANG M, CHENG J X. Dealing with the end issue of EMD based on polynomial fitting algorithm[J]. Computer Engineering and Application, 2004, 40(16):84-86(in Chinese).
[16] 王秋生, 段丹辉, 袁梅. 基于AR模型包络延拓的经验模态分解[J]. 数据采集与处理, 2008, 23(2):205-210. WANG Q S, DUAN D H, YUAN M. Empirical mode decomposition based on envelope extension by AR model[J]. Journal of Data Acquisition & Processing, 2008, 23(2):205-210(in Chinese).
[17] 谭善文. 多分辨希尔伯特-黄(Hilbert-Huang)变换方法的研究[D]. 重庆:重庆大学, 2001. TAN S W. The research of Hilbert-Huang transform based on multi-resolution analysis[D]. Chongqing:Chongqing University, 2001(in Chinese).
[18] 裘焱, 吴亚锋, 杨永峰, 等. Volterra模型预测在EMD边界延拓中的应用[J]. 振动、测试与诊断, 2010, 30(1):70-74. QIU Y, WU Y F, YANG Y F, et al. Application of volterra model prediction to end extension of empirical mode decomposition[J]. Journal of Vibration,Measurement & Diagnosis, 2010, 30(1):70-74(in Chinese).
[19] 胡维平, 莫家玲, 龚英姬, 等. 经验模态分解中多种边界处理方法的比较研究[J]. 电子与信息学报, 2007, 29(6):1394-1398. HU W P, MO J L, GONG Y J, et al. Methods for mitigation of end effect in empirical mode decomposition:A quantitative comparsion[J]. Journal of Electronics & Information Technology, 2007, 29(6):1394-1398(in Chinese).
[20] 杨永峰, 吴亚锋, 任兴民, 等. 基于最大Lyapunov指数预测的EMD边界延拓[J]. 物理学报, 2006, 58(6):3742-3746. YANG Y F, WU Y F, REN X M, et al. The largest Lyapunov prediction method for the end issue of empirical mode decomposition[J]. Acta Physical Sinica, 2006, 58(6):3742-3746(in Chinese).
[21] 王新, 王乾, 赵志科. 基于SVR的经验模态分解边界延拓改进方法[J]. 计算机工程与应用, 2014, 50(9):204-208. WANG X, WANG Q, ZHAO Z K. Improved method for endpoint extension of empirical mode decomposition based on SVR[J]. Computer Engineering and Applications, 2014, 50(9):204-208(in Chinese).
[22] 李月仙, 韩振南, 高建新, 等. 一种EMD端点延拓算法及其在齿轮故障诊断中的应用[J]. 噪声与振动控制, 2012, 32(2):108-111. LI Y X, HAN Z N, GAO J X, et al. An endpoint extension algorithm of EMD and its application in gear fault diagnosis[J]. Noise and Vibration Control, 2012, 32(2):108-111(in Chinese).
[23] HUANG N E, SHEN Z, LONG S R. A new view of nonlinear water waves:The Hilbert spectrum[J]. Annual Review of Fluid Mechanics, 1999, 31(1):417-457.
[24] HUANG N E, WU M L C, LONG S R, et al. A confidence limit for the empirical mode decomposition and Hilbert spectral analysis[J]. Proceedings of the Royal Society A Mathematical, Physical and Engineering Sciences, 2003, 459(2037):2317-2345.
[25] 郑祖光, 刘莉红. 经验模态分析与小波分析及其应用[M]. 北京:气象出版社, 2010:1-9. ZHENG Z G, LIU L H. The application of empirical mode decomposition and wavelet analysis[M]. Beijing:China Meteorological Press, 2010:1-9(in Chinese).
[26] 邓聚龙. 灰预测与灰决策[M]. 武汉:华中科技大学出版社, 2002:111-113. DENG J L. Grey prediction and grey decision-making[M]. Wuhan:Huazhong University of Science and Technology Press, 2002:111-113(in Chinese).
[27] 李建, 刘伟, 郭晓婷. 基于EMD分解的边界延拓新方法[J]. 电源技术, 2012, 36(10):1573-1575. LI J, LIU W, GUO X T. A new method of end continuations based on EMD[J]. Chinese Journal of Power Sources, 2012, 36(10):1573-1575(in Chinese).
[28] 李勇, 方兆本, 韦勇凤. 基于局部多项式回归的EMD端点效应抑制[J]. 中国科学技术大学学报, 2014, 44(9):786-792. LI Y, FANG Z B, WEI Y F. Suppressing end effect of EMD based on local polynomial regression[J]. Journal of University of Science and Technology of China, 2014, 44(9):786-792(in Chinese).
[29] 张弛, 王宏力. 基于支持向量经验模态分解的故障率时间序列预测[J]. 航空学报, 2011, 32(3):480-487. ZHANG C, WANG H L. Failure rate time series prediction based on support vector empirical mode decomposition[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(3):480-487(in Chinese).
[30] 沈国际, 陶利民, 陈仲生. 减速器振动信号的经验模态分解[J]. 航空学报, 2005, 26(1):62-65. SHEN G J, TAO L M, CHEN Z S. Research on empirical mode decomposition of gear box vibration signal[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(1):62-65(in Chinese).

文章导航

/