材料工程与机械制造

引入材料参数的弯管中性层偏移解析模型

  • 刘碧颖 ,
  • 李恒 ,
  • 李龙 ,
  • 杨合 ,
  • 谷瑞杰
展开
  • 1. 西北工业大学 凝固技术国家重点实验室, 西安 710072;
    2. 中国重型机械研究院有限公司, 西安 710032
刘碧颖,女,硕士研究生。主要研究方向:高性能轻量化薄壁构件精确塑性成形。E-mail:liubiyingnwpu@163.com;李恒,男,博士,教授,博士生导师。主要研究方向:高性能轻量化薄壁构件精确塑性成形。Tel:029-88460212-808,E-mail:liheng@nwpu.edu.cn;李龙,男,硕士研究生。主要研究方向:高性能轻量化薄壁构件精确塑性成形。E-mail:1041616749@qq.com;杨合,男,博士,教授,博士生导师。主要研究方向:先进塑性成形技术与计算机仿真。Tel:029-88460212-801,E-mail:yanghe@nwpu.edu.cn;谷瑞杰,男,高级工程师。主要研究方向:先进塑性成形技术与计算机仿真。E-mail:Jackgu0214@163.com

收稿日期: 2015-03-22

  修回日期: 2015-04-22

  网络出版日期: 2015-04-30

基金资助

国家自然科学基金面上项目(51275415);国家自然科学基金优秀青年科学基金(51522509)

Analytical model of neutral layer shift in tube bending introducing material parameters

  • LIU Biying ,
  • LI Heng ,
  • LI Long ,
  • YANG He ,
  • GU Ruijie
Expand
  • 1. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China;
    2. China National Heavy Machinery Research Institute Co., Ltd, Xi'an 710032, China

Received date: 2015-03-22

  Revised date: 2015-04-22

  Online published: 2015-04-30

Supported by

Nation Natural Science Foundation-Outstanding Youth Foundation(51522509)

摘要

中性层偏移是表征管材弯曲内外侧不均匀变形程度的关键参数。基于弯管截面力矩平衡条件,建立了引入材料参数的管材弯曲变形中性层偏移解析模型,针对管材数控绕弯和压弯过程对所建模型从多个方面进行了评估,研究了不同几何和材料等管材本征参数下的管材弯曲中性层偏移规律。结果表明:应用于TA18钛管数控绕弯,发现所建解析模型与已有解析方法预测精度相当,但能考虑材料参数影响,且相较于有限元模拟,本文解析模型更接近实验结果;应用于A6063铝合金管和AZ31镁合金管压弯过程,并与Hasegawa解析方法相较,发现本文解析模型能够准确预测拉压不对称对压弯中性层偏移的影响;弯曲半径减小,弯管直径增大,中性层向弯曲内侧移动;拉压屈服强度比减小,厚向异性指数增大,中性层向弯曲内侧移动。

本文引用格式

刘碧颖 , 李恒 , 李龙 , 杨合 , 谷瑞杰 . 引入材料参数的弯管中性层偏移解析模型[J]. 航空学报, 2016 , 37(3) : 1074 -1082 . DOI: 10.7527/S1000-6893.2015.0110

Abstract

Neutral layer shift is the key parameter to feature the degree of unequal bending deformation. Based on the balance of torque, an analytical model for neutral layer shift in tube bending is established by introducing material parameters. The model is assessed from various aspects in rotary draw bending and press bending and the rules of neutral layer shift in tube bending are studied with different geometric and material parameters. The results show that:appling the model to TA18 tube rotary draw bending, it is found that the accuracy of the established model is comparable to that of existing analytical method, but the established model can reflect the influence of material parameters on neutral layer shift and is more closer to the experiment result than finite element method; applied the model to A6063 and AZ31 tube press bending and compared the results with Hasegawa method, it shows that the established model provides better prediction accuracy of neutral layer shift under tension-compression asymmetry; decreasing the bending radius or increasing the bending diameter, the neutral layer shifts inwards; decreasing the ratio of tensile strength to compressive strength or increasing normal anisotropy exponent, the neutral layer also shifts inwards.

参考文献

[1] YANG H, LI H, ZHANG Z Y, et al. Advances and trends on tube bending forming technologies[J]. Chinese Journal of Aeronautics, 2012, 25(1):1-12.
[2] SCHUBERT P B. Pipe and tube bending[M]. New York:The Industrial Press, 1953:25-44.
[3] 王光祥, 杨合, 李恒, 等. 工艺参数对薄壁数控管弯曲成形质量影响的实验研究[J]. 机械科学与技术, 2004, 12(10):480-486. WANG G X, YANG H, LI H, et al. Experimental study of the influence of processing parameters on forming quality of thin-walled NC bending tube[J]. Mechanical Science and Technology, 2004, 12(10):480-486(in Chinese).
[4] 鄂大辛, 宁汝新, 胡新平, 等. 管材弯曲中壁厚变化引起横截面畸变的试验研究[J]. 航空制造技术, 2005(12):60-63. E D X, NING R X, HU X P, et al. Experimental study on the change of wall thickness causing the distortion of the cross-section in the process of tube bending[J]. Aeronautical Manufacturing Technology, 2005(12):60-63(in Chinese).
[5] 鄂大辛, 宁汝新, 唐承统, 等. 壁厚变形对弯管最小相对弯曲半径的影响[J]. 锻压技术, 2006, 31(1):90-93. E D X, NING R X, TANG C T, et al. Influence of wall thickness deformation upon the minimum bending radius bending radius of bending tube[J]. Forging & Stamping Technology, 2006, 31(1):90-93(in Chinese).
[6] 寇永乐, 杨合, 詹梅, 等. 薄壁管数控弯曲应变的网格法研究[J]. 中国机械工程, 2006, 10(17):31-34. KOU Y L, YANG H, ZHAN M, et al. Research on strain distribution of thin-walled tube in NC bending process using grid method[J]. China Mechanical Engineering, 2006, 10(17):31-34(in Chinese).
[7] YANG J, JEON B, OH S. The tube bending technology of a hydro forming process for an automotive part[J]. Journal of Materials Processing Technology, 2001, 111(1-3):175-181.
[8] 许志强, 李学通, 杜凤山. 中频加热大口径钢管弯管过程的有限元模拟[J]. 燕山大学学报, 2003, 27(2):122-125. XU Z Q, LI X T, DU F S. FEM simulation of pipe-bending process with large diameter using local heating[J]. Journal of Yanshan University, 2003, 27(2):122-125(in Chinese).
[9] LI H, YANG H, ZHAN M, et al. The interactive effects of wrinkling and other defects in thin-walled tube NC bending process[J]. Journal of Materials Processing Technology, 2007, 187-188(1):502-507.
[10] LI H, YANG H, ZHAN M, et al. Role of mandrel in NC precision bending process of thin-walled tube[J]. International Journal of Machine Tool & Manufacture, 2007, 47(7):1164-1175.
[11] LI C, YANG H, ZHAN M, et al. Effects of process parameters on numerical control bending process for large diameter thin-walled aluminum alloy tubes[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(3):668-673.
[12] ZHANG Z Y, YANG H, LI H, et al. Bending behaviors of large diameter thin-walled CP-Ti tube in rotary draw bending[J]. Progress in Natural Science:Materials International, 2011, 21(5):401-412.
[13] 方军, 鲁世强, 王克鲁, 等. 0Cr21Ni6Mn9N不锈钢管材数控弯曲截面畸变有限元分析[J]. 塑性工程学报, 2013, 20(5):71-76. FANG J, LU S Q, WANG K L, et al. FE analysis of section distortion in numerical control bending of 0Cr21Ni6Mn9N stainless steel tube[J]. Journal of Plasticity Engineering, 2013, 20(5):71-76(in Chinese).
[14] TANG N C. Plastic-deformation analysis in tube bending[J]. International Journal of Pressure Vessels and Piping, 2000, 77(12):751-759.
[15] LIU J Y, TANG C T, NING R X. Deformation calculation of cross-section based on virtual force in thin-walled tube bending process[J]. Chinese Journal of Mechanical Engineering, 2009, 22(5):696-701.
[16] 鄂大辛, 宁汝新, 古涛. 管材弯曲过程中的弹塑性变形分析[J]. 兵工学报, 2009, 30(10):1353-1356. E D X, NING R X, GU T. Analysis on the elastic plastic deformation during tube bending process[J]. Acta Armamentarii, 2009, 30(10):1353-1356(in Chinese).
[17] 鄂大辛, 郭学东, 宁汝新. 管材弯曲中应变中性层位移的分析[J]. 机械工程学报, 2009, 45(3):307-310. E D X, GUO X D, NING R X. Analysis of strain neutral layer displacement in tube-bending process[J]. Journal of Mechanical Engineering, 2009, 45(3):307-310(in Chinese).
[18] LIU J, YANG H, ZHAN M, et al. Accurate prediction of the profile of thick-walled titanium alloy tube in rotary-draw bending considering strength-differential effect[J]. Computational Materials Science, 2012, 60:113-122.
[19] HASEGAWA O, MANABE K, NISHIMURA H. Effect of tensile and compressive flow stresses on deformation behavior in cold press bending of AZ31 magnesium alloy tube[J]. Journal of the Japan Society for Technology of Plasticity, 2006, 47(540):59-63.
[20] ENGEL B, HASSAN H R. Investigation of neutral axis shifting in rotary draw bending processes for tubes[J]. Steel Research, 2014, 85:1209-1214.
[21] HILL R. A theory of the yielding flow of anisotropic metals[J]. A Proceedings of the Royal Society of London, 1948, 193(1033):281-297.
[22] 金霞, 李强. 薄壁管弯曲变形理论分析[J]. 机械研究与应用, 2007, 20(5):30-31. JIN X, LI Q. Theoretical analysis of thin-walled pipe distortion[J]. Mechanical Research & Application, 2007, 20(5):30-31(in Chinese).

文章导航

/