流体力学与飞行力学

脉冲爆震涡轮发动机增推装置性能试验

  • 邱华 ,
  • 徐泽阳 ,
  • 郑龙席 ,
  • 段小瑶
展开
  • 西北工业大学动力与能源学院, 西安 710072
徐泽阳,男,硕士研究生。主要研究方向:脉冲爆震涡轮发动机相关技术。E-mail:370881832@qq.com;郑龙席,男,博士,教授,博士生导师。主要研究方向:脉冲爆震发动机应用基础研究,航空发动机中的燃烧与流动,动力机械的结构、强度、振动、寿命及可靠性。Tel:029-88492414,E-mail:zhenglx@nwpu.edu.cn;段小瑶,男,硕士研究生。主要研究方向:脉冲爆震涡轮发动机相关技术。E-mail:550557422@qq.com

收稿日期: 2015-01-13

  修回日期: 2015-03-25

  网络出版日期: 2015-04-21

基金资助

国家自然科学基金(50906072,51306154);中央高校基本科研业务费专项资金(3102014JCY01003);陕西省自然科学基础研究计划(2015JM5221)

Tests of pulse detonation turbine engine performance with thrust augmentation devices

  • QIU Hua ,
  • XU Zeyang ,
  • ZHENG Longxi ,
  • DUAN Xiaoyao
Expand
  • School of Power and Energy, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2015-01-13

  Revised date: 2015-03-25

  Online published: 2015-04-21

Supported by

National Natural Science Foundation of China(50906072,51306154);the Fundamental Research Funds for the Central Universities(3102014JCY01003);Natural Science Basic Research Plan in Shaanxi Province of China(2015JM5221)

摘要

以液态汽油为燃料,通过在双管脉冲爆震涡轮发动机(PDTE)原理样机的涡轮出口加装不同喷管和引射器等增推装置,利用试验研究了不同增推装置对自吸气工作模式下(工作频率10~20 Hz)发动机工作状态及推进性能的影响。结果表明:虽然加装3种尾喷管之后涡轮转速、压气机增压比及压气机流量都有不同程度的下降,但发动机都获得了不同程度的推力增益;相比于工作频率20 Hz时无喷管发动机推力114.95 N,发动机加装尾喷管后最大推力可达143.3 N,实现增推24.7%,最大单位推力为749.87 N·s/kg;加装引射器后可以进一步增推,发动机最大推力达到200.67 N,实现增推39.8%,同时这种增推效果随着工作频率的升高而逐渐增大。

本文引用格式

邱华 , 徐泽阳 , 郑龙席 , 段小瑶 . 脉冲爆震涡轮发动机增推装置性能试验[J]. 航空学报, 2016 , 37(2) : 522 -532 . DOI: 10.7527/S1000-6893.2015.0083

Abstract

To acquire experimental propulsive performance of pulse detonation turbine engine(PDTE), thrust augmentation devices, such as converge/diverge nozzles and ejector, are installed on the turbine exit of two-tube PDTE experimental system. Experimental investigations are carried out to research the influences of thrust augmentation devices on the working condition and propulsive performance of PDTE. The PDTE experimental system is in the self-airbreathing working mode with working frequency from 10 Hz to 20 Hz. Liquid gasoline is used as fuel. Results show that the turbine speed, compression ratio and flow of compressor are all decreased with different degrees when converge/diverge nozzles are installed to the PDTE experimental system. However, the engine thrust is increased with the use of nozzles. Compared with the system without nozzle(thrust of which is 114.95 N at working frequency 20 Hz), the maximum thrust of the system with nozzle is 143.3 N and the thrust augmentation is 24.7%. And the maximum specific thrust is 749.87 N·s/kg. The thrust of the PDTE experimental system can be further increased with the installation of ejector to the system with nozzle. The maximum thrust at this condition is 200.67 N and the thrust augmentation is 39.8%. And the thrust augmentation can still be increased with the increase of working frequency.

参考文献

[1] 严传俊, 范玮, 黄希桥. 脉冲爆震发动机原理及关键技术[M]. 西安:西北工业大学出版社, 2005:1-12. YAN C J, FAN W, HUANG X Q. Principle and key technologies of pulse detonation[M]. Xi'an:Northwestern Polytechnical University Press, 2005:1-12(in Chinese).
[2] KAILASANATH K. Review of propulsion applications of detonation waves[J]. AIAA Journal, 2000, 38(9):1698-1708.
[3] ROY G D, FROLOV S M, BORISOV A A, et al. Pulse detonation propulsion:Challenges, current status, and future perspective[J]. Progress in Energy and Combustion Science, 2004, 30(6):545-672.
[4] WILLIAM H H, DAVID T P. Thermodynamic cycle analysis of pulse detonation engines[J]. Journal of Propulsion and Power, 2002, 18(1):68-76.
[5] SCRAGG R L. Detonation cycle gas turbine engine system having intermittent fuel and air delivery:US006000214A[P]. 1997-12-14.
[6] JOHNSON J E, DUNBAR L W, BUTLER L. Combined cycle pulse detonation turbine engine:US6442930B[P]. 2002-09-03.
[7] VENKATARAMANI K S, BUTLER L, BAILEY W A. Pulse detonation system for a gas turbine engine:US6928804B2[P]. 2005-08-15.
[8] ORLANDO R J, VENKATARAMANI K S, LEE C P. Gas turbine engine having improved core system:US7093446B2[P]. 2006-08-22.
[9] PETTERS D P, FELDER J L. Engine system performance of pulse detonation concepts using the NPSS program:AIAA-2002-3910[R]. Reston:AIAA, 2002.
[10] GOLDMEER J, TANGIRALA V, DEAN A. Systems-level performance estimation of a pulse detonation based hybrid engine[J]. Journal of Engineering for Gas Turbines & Power, 2008, 130(1):82-93.
[11] ANDRUS I Q, KING P I. Evaluation of a high bypass turbofan hybrid utilizing a pulsed detonation combustor:AIAA-2007-5074[R]. Reston:AIAA, 2007.
[12] 何龙, 郑龙席, 邱华, 等. 脉冲爆震涡轮发动机性能计算[J]. 推进技术, 2012, 33(5):665-670. HE L, ZHENG L X, QIU H, et al. Calculating performance of pulse detonation turbo engine[J]. Journal of Propulsion Technology, 2012, 33(5):665-670(in Chinese).
[13] RASHEED A, FURMAN A H, DEAN A J. Pressure measurements and attenuation in a hybrid multitube pulse detonation turbine system[J]. Journal of Propulsion and Power, 2009, 25(1):148-161.
[14] RASHEED A, FURMAN A H, DEA A J. Experimental investigations of the performance of a multitube pulse detonation turbine system[J]. Journal of Propulsion and Power, 2011, 27(3):586-596.
[15] ANDREW S G, ROBERT D, DAVID M, et al. Experimental comparison of axial turbine performance under pulsed-air and pulsed-detonation flows:AIAA-2013-3624[R]. Reston:AIAA, 2013.
[16] ROUSER K P, KING P I, SCHAUER F R, et al. Time-resolved flow properties in a turbine driven by pulsed detonations[J]. Journal of Propulsion and Power, 2014, 30(6):1528-1536.
[17] MAEDA S, KASAHARA J, MATSUO A, et al. Analysis on thermal efficiency of non-compressor type pulse detonation turbine engines[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2010, 53(181):192-206.
[18] DENG J X, ZHENG L X, YAN C J, et al. Experimental investigations of a pulse detonation combustor integrated with a turbine[J]. International Journal of Turbo & Jet-Engines, 2008, 25(4):247-257.
[19] LI X F, ZHENG L X, QIU H, et al. Experimental investigations on the power extraction of a turbine driven by a pulse detonation combustor[J]. Chinese Journal of Aeronautics, 2013, 26(6):1353-1359.
[20] 李晓丰, 郑龙席, 邱华, 等. 脉冲爆震涡轮发动机原理性试验研究[J]. 实验流体力学, 2013, 27(6):1-5. LI X F, ZHENG L X, QIU H, et al. Experimental study on principle of pulse detonation turbine engine[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(6):1-5(in Chinese).
[21] 李晓丰, 郑龙席, 邱华, 等.两相脉冲爆震涡轮发动机原理性试验[J]. 航空动力学报, 2013, 28(12):2731-2736. LI X F, ZHENG L X, QIU H, et al. Principle experiments on two phase pulse detonation turbine engine[J]. Journal of Aerospace Power, 2013, 28(12):2731-2736(in Chinese).
[22] SCHAUER F, BRADLEY R, HOKE J. Interaction of a pulsed detonation engine with a turbine:AIAA-2003-0891[R]. Reston:AIAA, 2003.
[23] TOSHIYUKI T, SHINICHI S, TERUO Y, et al. Interaction between two cylinders in a pulse detonation engine[J]. International Journal of Energetic Materials and Chemical Propulsion, 2009, 8(6):489-500.
[24] MCBRIDE B J, GORDON S. Computer program for calculation of complex chemical equilibrium compositions and applications:NASA RP-1311[R]. Washington, D.C.:NASA, 1996.
[25] MA F H, CHOI J Y, YANG V. Propulsive performance of airbreathing pulse detonation engines[J]. Journal of Propulsion and Power, 2006, 22(6):1188-1203.
[26] QIU H, XIONG C, FAN W. One-dimensional unsteady design method for pulsed detonation engine nozzles[J]. Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering, 2014, 228(13):2496-2507.

文章导航

/