电子与控制

考虑扰流的舰载机终端进场线性模型

  • 夏桂华 ,
  • 董然 ,
  • 许江涛 ,
  • 李新飞
展开
  • 1. 哈尔滨工程大学 自动化学院, 哈尔滨 150001;
    2. 哈尔滨工程大学 航天与建筑工程学院, 哈尔滨 150001;
    3. 哈尔滨工程大学 船舶工程学院, 哈尔滨 150001
夏桂华,男,博士,教授,博士生导师。主要研究方向:先进控制理论及应用、机器人与智能控制。Tel:0451-82589575,E-mail:xiaguihua@hrbeu.edu.cn;董然,男,博士研究生。主要研究方向:先进控制理论及应用。Tel:0451-82589575,E-mail:dongran@hrbeu.edu.cn

收稿日期: 2015-03-16

  修回日期: 2015-04-03

  网络出版日期: 2015-04-13

基金资助

国家自然科学基金(61304060,11372080);国家国际科技合作专项(2013DFR10030);哈尔滨市青年科技创新人才基金(2014RFQXJ121)

Linearized carrier-based aircraft model in final approach phase with air turbulence considered

  • XIA Guihua ,
  • DONG Ran ,
  • XU Jiangtao ,
  • LI Xinfei
Expand
  • 1. College of Automation, Harbin Engineering University, Harbin 150001, China;
    2. College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China;
    3. College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China

Received date: 2015-03-16

  Revised date: 2015-04-03

  Online published: 2015-04-13

Supported by

National Natural Science Foundation of China(61304060, 11372080);International Science & Technology Cooperation Program of China(2013DFR10030);Innovative Talents of Science and Technology Research Fund in Harbin City(2014RFQXJ121)

摘要

回收舰载机需要精确的终端路径和姿态控制,舰载机线性小扰动模型是这一阶段系统分析和控制器设计的必要工具,它需要足够准确地描述在主要操纵输入和进场路径大气紊流作用下舰载机的动态特性。首先使用代数线性化方法建立舰载机终端进场纵向运动的小扰动模型,仿真证明该模型能精确描述无风条件下进场舰载机对控制指令的响应,但通常的建模气流扰动影响的方法不能正确反映舰尾大气紊流对舰载机进场速度的干扰。针对该问题,重点研究了垂向风引起的进场舰载机轨迹方向上的力瞬变,提出了量化舰载机地速扰动的表达式以优化线性模型参数。最后,通过完成舰载机动力学模型在不同风场下的开环仿真以及在舰尾流场中的终端进场闭环仿真,验证了改进的线性模型的有效性,表明它适用于复杂流场下着舰控制系统的性能分析和设计。

本文引用格式

夏桂华 , 董然 , 许江涛 , 李新飞 . 考虑扰流的舰载机终端进场线性模型[J]. 航空学报, 2016 , 37(3) : 970 -983 . DOI: 10.7527/S1000-6893.2015.0099

Abstract

Recovery of a carrier-based aircraft demands precise terminal control of position and attitude. For system analysis and controller design in this phase, it is crucial to obtain an accurate linear small-perturbation model of the aircraft. The linear model needs to be precise enough to describe responses of the aircraft to not only the major maneuvers imposed, but the air turbulence around the approach path. In this paper, a linear perturbed model for the longitudinal final approach dynamics of an example carrier-based aircraft is established with an algebraic linearization method. Simulated tests indicate that the precision of the model is sufficient in depicting the responses of the aircraft to coordinated control inputs in calm air environment, but deficient in analyzing the approach velocity disturbed by carrier air-wake because of employing a conventional modeling method to introduce the air turbulence effects. For the purpose, the attention is firstly turned to the researches of the force transient that is presented in the course direction of the aircraft and induced by a vertical gust of wind. Then, an expression to quantify the velocity change of the aircraft is proposed, thereby optimizing the relevant parameters of the derived linear model. At last, the validity of the modified linear model is verified by performing the simulations of the linear and the nonlinear aircraft models in the open-loop state with different wind profiles involved, as well as in the closed-loop final approach state with carrier air-wake disturbance engaged. The results show that the improved linear model is applicable to the control system analysis and design of the aircraft carrier landing in complex airflow fields.

参考文献

[1] 李晓磊, 赵廷弟. 基于模糊推理的舰载机进舰过程安全性仿真分析[J]. 航空学报, 2013, 34(2):325-333. LI X L, ZHAO T D. Carrier-based aircraft landing process safety simulation analysis based on fuzzy inference[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2):325-333(in Chinese).
[2] RUDOWSKY T, COOK S, HYNES M, et al. Review of the carrier approach criteria for carrier-based aircraft:NAWCADPAX/TR-2002/71[R]. Patuxent River, MD:Naval Air Warfare Center, Aircraft Division, 2002.
[3] MOOK D J, SWANSON D A, ROEMER M J, et al. Improved noise rejection in automatic carrier landing systems[J]. Journal of Guidance, Control, and Dynamics, 1992, 15(2):509-519.
[4] CRASSIDIS J L, MOOK D J, MCGRATH J M. Automatic carrier landing system utilizing aircraft sensors[J]. Journal of Guidance, Control, and Dynamics, 1993, 16(5):914-921.
[5] STEINBERG M. A fuzzy logic based F/A-18 automatic carrier landing system:AIAA-1992-4392[R]. Reston:AIAA, 1992.
[6] DURAND T S, WASICKO R J. Factors influencing glide path control in carrier landing[J]. Journal of Aircraft, 1967, 4(2):146-158.
[7] URNES J M, HESS R K. Development of the F A-18A automatic carrier landing system[J]. Journal of Guidance, Control, and Dynamics, 1985, 8(3):289-295.
[8] ETKIN B. Dynamics of atmospheric flight[M]. New York:Wiley, 1972:148-188, 529-548.
[9] RUDOLF B. 飞行控制[M]. 金长江, 译. 北京:国防工业出版社, 1999:152-166. RUDOLF B. Flugregelung[M]. JIN C J, translated. Beijing:National Defense Industry Press, 1999:152-166(in Chinese).
[10] 肖业伦. 飞行器运动方程[M]. 北京:航空工业出版社, 1987:12-35, 62-81, 90-103. XIAO Y L. Aircraft equations of motion[M]. Beijing:Aviation Industry Press, 1987:12-35, 62-81, 90-103(in Chinese).
[11] 彭兢. 舰载飞机进舰着舰的自动引导和控制研究[D]. 北京:北京航空航天大学, 2001:106-110, 168-170. PENG J. Research on the automatic guide and control of carrier-based airplane approach and landing[D]. Beijing:Beihang University, 2001:106-110, 168-170(in Chinese).
[12] 邓娟. 舰载飞机自动着舰纵向控制系统设计的理论与仿真研究[D]. 上海:复旦大学, 2010:30-47. DENG J. Theory and simulation on design of the longitudinal automatic carrier landing system for carrier-based airplane[D]. Shanghai:Fudan University, 2010:30-47(in Chinese).
[13] MARTORELLA P, KELLY C P, NASTASI R. Precision flight path control in carrier landing approach:AIAA-1981-1710[R]. Reston:AIAA, 1981.
[14] THOMPSON D J. Automatic vectoring and landing of carrier based high performance aircraft:AIAA-1965-1209[R]. Reston:AIAA, 1965.
[15] TEPER G L. Aircraft stability and control data:NASA CR-96008[R]. Hawthorne:Systems Technology, Inc.,1969.
[16] BALAS G J, PACKARD A K, RENFROW J, et al. Control of the F-14 aircraft lateral-directional axis during powered approach[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(6):899-908.
[17] SUBRAHMANYAM M B. H-infinity design of F/A-18A automatic carrier landing system[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(1):187-191.
[18] ANDERSON M R. Inner and outer loop manual control of carrier aircraft landing:AIAA-1996-3877[R]. Reston:AIAA, 1996.
[19] JUDD T M. A modified design concept, utilizing deck motion prediction, for the A-7E automatic carrier landing system[D]. Monterey, CA:Naval Postgraduate School,1973.
[20] BOSKOVIC J D, REDDING J. An autonomous carrier landing system for unmannned aerial vehicles:AIAA-2009-6264[R]. Reston:AIAA, 2009.
[21] NELSON R C. Fligt stability and automatic control[M]. 2nd ed. New York:McGraw-Hill, 1997:42-53.
[22] 余锋. 台湾海峡上空的新幽灵波音揭示X-45N舰载侦查无人机的设计特点[J]. 国际航空, 2007(8):50-52. YU F. Boeing reveals details of X-45N recon/bomber design[J]. International Aviation, 2007(8):50-52(in Chinese).
[23] HUFF R K, KESSLER G K. Enhanced displays, flight controls and guidance systems for approach and landing:AD-A244869[R]. Patuxent River, MD:Naval Air Test Center, 1991.
[24] MIL-HDBK-1797. Flying qualities of pilot aircraft[S]. Washington, D.C.:U.S. Department of Defense, 1997:686-689.
[25] 王晓陵, 陆军. 最优化方法与最优估计[M]. 哈尔滨:哈尔滨工程大学出版社, 2007:209-243. WANG X L, LU J. Optimization method and optimal estimation[M]. Harbin:Harbin Engineering University Press, 2007:209-243(in Chinese).

文章导航

/