固体力学与飞行器总体设计

基于灵敏度的可靠性优化解耦方法

  • 朱海燕 ,
  • 袁修开
展开
  • 厦门大学 航空系, 厦门 361005
朱海燕 女,硕士研究生。主要研究方向:结构可靠性分析与应用。E-mail: 32020131152875@stu.xmu.edu.cn

收稿日期: 2014-04-23

  修回日期: 2014-09-15

  网络出版日期: 2015-03-31

基金资助

国家自然科学基金(51105309)

A decoupling method of reliability optimization based on sensitivity

  • ZHU Haiyan ,
  • YUAN Xiukai
Expand
  • Department of Aeronautics, Xiamen University, Xiamen 361005, China

Received date: 2014-04-23

  Revised date: 2014-09-15

  Online published: 2015-03-31

Supported by

National Natural Science Foundation of China (51105309)

摘要

针对航空结构可靠性优化设计问题,提出了一种基于灵敏度的可靠性优化(RBO)解耦方法。首先将高效求解的可靠性灵敏度用于失效概率函数(FPF)的快速构建,其优点在于仅需要一次可靠性分析即可得到失效概率函数的局部近似,克服了常规求解方法中需要多次可靠性分析的缺点;然后将得出的FPF近似代入RBO模型中,将原问题解耦成确定性优化子问题,可用常规优化方法来求解。另外,采用了序列近似优化策略来保证可靠性优化解的正确性。文中给出了复合材料梁和机翼三盒段结构的优化求解算例来说明本文方法的可行性和正确性。

本文引用格式

朱海燕 , 袁修开 . 基于灵敏度的可靠性优化解耦方法[J]. 航空学报, 2015 , 36(3) : 881 -888 . DOI: 10.7527/S1000-6893.2014.0258

Abstract

A decoupling method based on reliability sensitivity is proposed for the reliability-based optimization (RBO) design of aeronautic structure. It utilizes reliability sensitivity to construct the explicit approximation of the failure probability function (FPF) with respect to design variables quickly, thus its advantage is that it only needs one reliability analysis and repeated reliability analyses can be avoided. After the approximation of the FPF is established, the target RBO problem can be transformed into a deterministic one which can be solved by conventional optimization strategies. Meanwhile, a sequential approximate optimization framework is adopted to guarantee the accuracy of the solution. Examples of composite beam and three-box simulated flap structure are given to demonstrate the feasibility and validity of the proposed optimization method.

参考文献

[1] Luo Y J, Zhou M D, Wang Y, et al. Reliability based topology optimization for continuum structures with local failure constraints[J]. Computers and Structures, 2014, 143(17-18): 73-84.



[2] Chen J Q, Tang Y F, Ge R, et al. Reliability design optimization of composite structures based on PSO together with FEA[J]. Chinese Journal of Aeronautics, 2013, 26(2): 343-349.



[3] Huang H Z, Yu H, Yuan Y H, et al. Individual disciplinary feasible method for reliability based multidisciplinary design optimization[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10): 1871-1876 (in Chinese). 黄洪钟, 余辉, 袁亚辉, 等. 基于单学科可行法的多学科可靠性设计优化[J]. 航空学报, 2009, 30(10): 1871-1876.



[4] Tu J, Choi K K, Park Y H. A new study on reliability-based design optimization[J]. ASME Journal of Mechanical Design, 1999, 121(4): 557-564.



[5] Kuschel N, Rackwitz R. Two basic problems in reliability-based structural optimization[J]. Mathematical Methods of Operations Research, 1997, 46(3): 309-333.



[6] Zou T, Mahadevan S. A direct decoupling approach for efficient reliability-based design optimization[J]. Structural and Multidisciplinary Optimization, 2006, 31(3): 190-200.



[7] Jensen H A, Catalan M A. On the effects of non-linear elements in the reliability-based optimal design of stochastic dynamical systems[J]. International Journal of Non-Linear Mechanics, 2007, 42(5): 802-816.



[8] Jacobs J H, Etman L F P, van Keulen F, et al. Framework for sequential approximate optimization[J]. Structural and Multidisciplinary Optimization, 2004, 27(5): 384-400.



[9] Valdebenito M A, Schuëller G I. Efficient strategies for reliability-based optimization involving non-linear, dynamical structures[J]. Computer and Structures, 2011, 89(19-20): 1797-1811.



[10] Yuan X K, Lu Z Z. Reliability sensitivity analysis method based on importance sampling[J]. Journal of Mechanical Strength, 2007, 29(5): 760-764 (in Chinese). 袁修开, 吕震宙. 可靠性灵敏度分析的重要抽样法[J]. 机械强度, 2007, 29(5): 760-764.



[11] Lu Z Z, Song S F, Li H S, et al. Structural reliability and reliability sensitivity analysis[M]. Beijing: Science Press, 2009: 90-178(in Chinese). 吕震宙, 宋述芳, 李洪双, 等. 结构机构可靠性及可靠性灵敏度分析[M]. 北京: 科学出版社, 2009: 90-178.



[12] Au S K, Beck J L. A new adaptive important sampling scheme[J]. Structural Safety, 1999, 21(2): 135-158.



[13] Yuan X K, Lu Z Z. Efficient approach for reliability-based optimization based on weighted importance sampling approach[J]. Reliability Engineering & System Safety, 2014, 132(12): 107-114.

文章导航

/