固体力学与飞行器总体设计

模块化飞机结构优化设计的等效多工况法

  • 张立丰 ,
  • 姚卫星 ,
  • 邹君
展开
  • 1. 南京航空航天大学 飞行器先进设计技术国防重点学科实验室, 南京 210016;
    2. 南京航空航天大学 机械结构力学及控制国家重点实验室, 南京 210016
张立丰 男, 硕士, 助理工程师。主要研究方向: 飞机结构设计 E-mail: 478347009@qq.com;邹君 男, 博士研究生。主要研究方向: 飞行器结构综合设计 E-mail: sc_zoujun@163.com

收稿日期: 2014-02-19

  修回日期: 2014-05-20

  网络出版日期: 2015-03-31

基金资助

机械结构力学及控制国家重点实验室(南京航空航天大学)自主研究课题(0213G02)

Equivalent multi-case optimization architecture for modular aircraft structures

  • ZHANG Lifeng ,
  • YAO Weixing ,
  • ZOU Jun
Expand
  • 1. Key Laboratory of Fundamental Science for National Defense-Advanced Design Technology of Flight Vehicle, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2014-02-19

  Revised date: 2014-05-20

  Online published: 2015-03-31

Supported by

Supported by State Key Laboratory of Mechanics and Control of Mechanical Structures (Nanjing University of Aeronautics and Astronautics) (0213G02)

摘要

随着航空科技的发展,追求飞机任务的多样化和低生命周期成本成为一大趋势,其中模块化飞机设计对于未来飞机设计的多用途以及经济性具有实际意义。针对模块化飞机结构优化设计的特点,提出了等效多工况(EMCO)法,将模块化结构优化问题分解为通用模块的多工况优化问题和各专用模块的独立优化问题。通用模块等效为承受多工况载荷的结构,并按多工况优化方法进行优化设计,使通用模块质量最轻。各型号的专用模块在此基础上分别进行独立的优化设计。通用模块和专用模块交替优化,直至目标函数值收敛。最后,分别通过模块化桁架结构和机翼结构优化实例展示了该方法的运用效果,并与单独优化结果和加权单目标优化结果进行了对比。结果表明该方法降低了计算规模,收敛效果较好。

本文引用格式

张立丰 , 姚卫星 , 邹君 . 模块化飞机结构优化设计的等效多工况法[J]. 航空学报, 2015 , 36(3) : 834 -839 . DOI: 10.7527/S1000-6893.2014.0104

Abstract

With the development of technology in aviation, aircraft that can be used for a wider variety of missions and have lower lifecycle costs become more prevalent. The design of the modular aircraft has a practical significance in the multi-purpose design and economic benefit. According to the features of modular aircraft structure design, an equivalent multi-case optimization (EMCO) architecture is proposed, which divides the modular optimization problem into the optimization of common module and individual modules. The common module is transferred to a structure under multiple loading conditions, and then is optimized under minimum weight objective. The individual modules in each structure are then optimized separately. The common module and the individual module are optimized alternately until the criterion of convergence is satisfied. The method is verified by a modular truss structure and a modular wing structure example, respectively. The comparision with the results of individual design and weighted single objective design method shows that the new method reduces the calculation scale and improves the convergence efficiency.

参考文献

[1] McMasters J H, Cummings R M. From farther, faster, higher to leaner, meaner, greener: further directions in aeronautics[J]. Journal of Aircraft, 2004, 41(1): 51-61.

[2] Fan L, Wang Z. Application of modularization technology at each development stage of aircraft[J]. Aeronautical Science & Technology, 2010(3): 19-21 (in Chinese). 范林, 王哲. 模块化技术在飞机研制中的应用[J]. 航空科学技术, 2010(3): 19-21.

[3] Brown R B. Low cost innovative design for new commercial transport family, AIAA-2002-5830[R]. Reston:AIAA, 2002.

[4] Funk J E, Harber J R, Morin L. Future military common aircraft development opportunities, AIAA-2006-1514 [R]. Reston: AIAA, 2006.

[5] de Weck O L, Nadir W D, Wong J G, et al. Modular structures for manned space exploration: the truncated octahedron as a building block, AIAA-2005-2764[R]. Reston: AIAA, 2005.

[6] Gonzalez-Zugasti J P, Otto K N, Baker J D. A method for architecting product platforms[J]. Research in Engineering Design, 2000, 12(2): 61-72.

[7] Yong M P,Yu X Q. A structural optimization method for aircraft family[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3): 664-669 (in Chinese). 雍明培, 余雄庆. 一种面向飞机族的结构优化方法[J]. 航空学报, 2008, 29(3): 664-669.

[8] Hou L, Tang R Z, Xu Y S. Progress in design theory, technology and application research of modular pro-duct[J]. Chinese Journal of Mechanical Engineering, 2004, 40(1): 56-61 (in Chinese). 侯亮, 唐任仲, 徐燕申. 产品模块化设计理论、技术与应用研究进展[J]. 机械工程学报, 2004, 40(1): 56-61.

[9] Simpson T W, Marion T, de Weck O L, et al. Platform-based design and development: current trends and needs in industry[C]//ASME International Design Engineering Technical Conference. 2006: 1-12.

[10] Duray R, Ward P T, Milligan G W, et al. Approaches to mass customization: configurations and empirical validation[J]. Journal of Operations Management, 2000,18(6): 605-625.

[11] Cetin O L, Saitou K. Decomposition-based assembly synthesis for structural modularity [J]. Journal of Mechanical Design, 2004, 126(2): 234-243.

[12] Cetin O L. Decomposition-based assembly synthesis of family of structures[D]. Michigan:The University of Michigan, 2003.

[13] Pate D J, Patterson M D, German B J. Methods for optimizing a family of reconfigurable aircraft, AIAA-2011-6850[R]. Reston: AIAA, 2011.

[14] Allison J T, Roth B, Kokkolaras I, et al. Aircraft family design using decomposition-based methods[C]//Proceedings of the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. 2006: 1-12.

[15] Roth B. Aircraft family design using enhanced collaborative optimization[D]. Pale Alto: Stanford University, 2008.

[16] Willcox K, Wakayama S. Simultaneous optimization of a multiple-aircraft family[J]. Journal of Aircraft, 2003, 40(4): 616-622.

文章导航

/