核心机驱动风扇级匹配特性分析
收稿日期: 2015-01-16
修回日期: 2015-03-03
网络出版日期: 2015-03-28
Matching characteristics of core driven fan stage
Received date: 2015-01-16
Revised date: 2015-03-03
Online published: 2015-03-28
核心机驱动风扇级(CDFS)是双涵道变循环发动机(DBE)的核心部件之一。为了深入研究CDFS在双涵道模式下的特点,利用CDFS匹配特性图,结合三维数值模拟分析了DBE中CDFS的匹配特性(单涵道模式工作点为设计点,双涵道模式工作点为匹配点)。结果表明,给定双涵道模式的匹配流量和压比时,增加匹配转速使转子负荷降低,静子负荷增加,可以调整匹配转速使CDFS性能最佳;给定双涵道模式的匹配流量和转速时,增加匹配压比使转子和静子的负荷同时增加,匹配压比较高时,工作点效率较高但裕度较低;仅给定匹配流量时,可以调整匹配转速和压比改变CDFS在双涵道模式的工作特性,获得满足某个约束条件的最佳状态。
张鑫 , 刘宝杰 . 核心机驱动风扇级匹配特性分析[J]. 航空学报, 2015 , 36(9) : 2850 -2858 . DOI: 10.7527/S1000-6893.2015.0060
The matching characteristics of the core driven fan stage (CDFS) in a double bypass engine (DBE) have been investigated with CDFS matching map and numerical simulation (taking the single bypass mode operating point as the design point and the double bypass mode operating mode as the matching point). The results show that given the matching massflow rate and pressure ratio in the double bypass mode, the aerodynamic load decreases for the rotor and increases for the stator. The best CDFS performance can be reached at a proper matching speed. For a given matching massflow rate and speed in the double bypass mode, both the aerodynamic loads of the rotor and stator can be increased by increasing matching pressure ratio, which in turn increase the efficiency and decrease the stall margin. If only the matching massflow rate is given, excellent performance can be reached by adjusting the matching speed and pressure ratio under a certain constraint.
[1] Fishbach L H, Stitt L E, Stone J R, et al. NASA research in supersonic propulsion-a decade of progress, AIAA-1982-1048[R]. Reston: AIAA, 1982.
[2] Rallabhandi S K, Mavris D N. Simultaneous airframe and propulsion cycle optimization for supersonic aircraft design, AIAA-2008-0143[R]. Reston: AIAA, 2008.
[3] French M W, Allen G L. NASA VCE test bed engine aerodynamic performance characteristics and results, AIAA-1981-1594[R]. Reston: AIAA, 1981.
[4] Vdoviak J W, Knott P R, Ebacker J A. Aerodynamic/acoustic performance of YJ101/double bypass VCE with coannualr plug nozzle, NASA/CR-159869[R].Washington,D.C.: NASA, 1981.
[5] Vdoviak J W, Ebacker J A. VCE test bed engine for supersonic cruise research, NASA Conference Publication 2108[R]. Washington, D.C.: NASA Langley Research Center, 1979: 347-356.
[6] Morris S J, Coen P G, Geiselhart K A. Performance potential of an advanced technology Mach 3 turbojet engine installed on a conceptual high-speed civil transport, NASA Technical Memorandum 4144[R]. Washington, D.C.: NASA, 1989.
[7] Krebs J N, Allan R D. Supersonic propulsion—1970 to 1977, AIAA-1977-0832[R]. Reston: AIAA, 1977.
[8] Martin S. Research on TBCC propulsion for a Ma 4.5 supersonic cruise airliner, AIAA-2006-7976[R]. Reston: AIAA, 2006.
[9] Bartolotta P A, McNelis N B. High speed turbines: development of a turbine accelerator (RTA) for space access, AIAA-2003-6943[R]. Reston: AIAA, 2003.
[10] Koff B L, Koff S G. Engine design and challenges for the high Mach transport, AIAA-2007-5344[R]. Reston: AIAA, 2007.
[11] Wang H D. Investigation of performance model and performance analysis for double-bypass variable cycle engine[D]. Beijing: Beihang University, 1996 (in Chinese). 王洪东. 双外涵变循环发动机性能模拟研究及性能分析[D]. 北京: 北京航空航天大学, 1996.
[12] Liu Z W, Wang Z X, Huang H C, et al. Numerical simulation on performance of variable cycle engines[J]. Journal of Aerospace Power, 2010, 25(6): 1310-1315 (in Chinese). 刘增文, 王占学, 黄红超, 等. 变循环发动机性能数值模拟[J]. 航空动力学报, 2010, 25(6): 1310-1315.
[13] Gou X Z, Zhou W X, Huang J Q. Component-level modeling technology for variable cycle engine[J]. Journal of Aerospace Power, 2013, 28(1): 105-111 (in Chinese). 苟学中, 周文详, 黄金泉. 变循环发动机部件级建模技术研究[J]. 航空动力学报, 2013, 28(1): 105-111.
[14] Wang Y, Li Q H, Huang X H. Research of variable cycle engine modeling techniques[J]. Journal of Aerospace Power, 2013, 28(4): 954-960 (in Chinese). 王元, 李秋红, 黄向华. 变循环发动机建模技术[J]. 航空动力学报, 2013, 28(4): 954-960.
[15] Zhao M J. Hardware-in-loop simulation test-bed for variable cycle engine[D]. Beijing: North China University of Technology, 2008 (in Chinese). 赵敏静. 变循环发动机控制半物理仿真研究[D]. 北京: 北方工业大学, 2008.
[16] Zhang X, Liu B J. Analysis of aerodynamic design of core driven fan stage[J]. Journal of Aerospace Power, 2010, 25(2): 434-442 (in Chinese). 张鑫, 刘宝杰. 核心机驱动风扇级的气动设计特点分析[J]. 航空动力学报, 2010, 25(2): 434-442.
[17] Zhang X, Liu B J. Analysis of the core driven fan stage with compact aerodynamic configuration[J]. Journal of Propulsion Technology, 2011, 32(1): 47-53 (in Chinese). 张鑫, 刘宝杰. 紧凑布局核心机驱动风扇级设计参数影响分析[J]. 推进技术, 2011, 32(1): 47-53.
[18] Zhang X, Liu B J. Investigation of a methodology for the CDFS matching in the non-design operating mode[J]. Journal of Propulsion Technology, 2014, 35(3): 320-327 (in Chinese). 张鑫, 刘宝杰. 核心机驱动风扇级在非设计模式下的匹配方法研究[J]. 推进技术, 2014, 35(3): 320-327.
[19] Zhang X. The aerodynamic design of the core drive fan stage and the matching with the downstream components[D]. Beijing: Beihang University, 2011 (in Chinese). 张鑫. 核心机驱动风扇级的气动设计及其与下游部件的匹配分析[D]. 北京: 北京航空航天大学, 2011.
[20] Gallimore S J, Bolger J J, Cumpsty N A, et al. The use of sweep and dihedral in multistage axial flow compressor blading—part I: University research and methods development, ASME Paper, GT-2003-30328[R]. New York: ASME, 2003.
/
〈 | 〉 |