零泊松比胞状结构的单胞面内等效模量分析及其影响因素
收稿日期: 2014-10-20
修回日期: 2015-03-02
网络出版日期: 2015-03-23
基金资助
国家自然科学基金(50911140286);江苏省高校优势学科建设工程;2014年度"青蓝工程
Single cells' in-plane equivalent moduli analysis of zero Poisson's ratio cellular structures and their effects factor
Received date: 2014-10-20
Revised date: 2015-03-02
Online published: 2015-03-23
Supported by
National Natural Science Foundation of China (50911140286);A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions;2014 "Qinglan" Project
李杰锋 , 沈星 , 陈金金 . 零泊松比胞状结构的单胞面内等效模量分析及其影响因素[J]. 航空学报, 2015 , 36(11) : 3616 -3629 . DOI: 10.7527/S1000-6893.2015.0063
Mechanical properties of zero Poisson's ratio cellular structures need to be accurately described to adapt to the requirements of different morphing applications. Based on the theory of beam bending, the equivalent elastic moduli of three types of cell structure are analyzed considering both the bending and axial force. The equivalent shear moduli is analyzed based on virtual work principle. Then the obtained expressions of equivalent moduli are compared with the results of finite element analysis. Meanwhile, the effects of geometric parameters of cell on equivalent elastic modulus and equivalent shear modulus are investigated. Finally, some experiments are implemented to verify the expressions of equivalent moduli. The research indicates that the obtained expressions of equivalent moduli are accurate,reasonable and applicable for morphing cellular structures. The three types of cell have the same expression for equivalent elastic modulus, but different expressions for equivalent shear modulus. The trends and magnitudes of variation of equivalent moduli with geometric parameters are different.
[1] Escalé P, Rubatat, Billon L, et al. Recent advances in honeycomb-structured porous polymer films prepared via breath figures[J]. European Polymer Journal, 2012, 48(6):1001-1025.
[2] Meran A P, Toprak T, Mǔan A. Numerical and experimental study of crashworthiness parameters of honeycomb structures[J]. Thin-Walled Structures, 2014, 78:87-94.
[3] Gibson L J, Ashby M F. Cellular solids:structures and properties[M]. 2nd ed. Cambridge:Cambridge University Press, 1997:93-160.
[4] Olympio K R, Gandhi F. Zero-V cellular honeycomb flexible skins for one-dimensional wing morphing[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston:AIAA Inc.,2007:1735.1-28.
[5] Wereley N M, Gandhi F. Flexible skins for morphing aircraft[J]. Journal of Intelligent Material Systems and Structures, 2010, 21(17):1697-1698.
[6] Olympio K R, Gandhi F, Asheghian L, et al. Design of a flexible skin for a shear morphing wing[J]. Journal of Intelligent Material Systems and Structures, 2010, 21(17):1755-1770.
[7] Murugan S, Friswell M I. Morphing wing flexible skins with curvilinear fiber composites[J]. Composite Structures, 2013, 99:69-75.
[8] Leng J S, Sun J, Liu Y J. Application status and future prospect of smart material and structures in morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):29-45(in Chinese).冷劲松,孙健,刘彦菊.智能材料和结构在变体飞行器上的应用现状与前景展望[J].航空学报, 2014, 35(1):29-45.
[9] Dale A S, Cooper J E. Topology optimization & experi mental validation of 0-υ honeycomb for adaptive morphing wing[C]//22nd AIAA/ASME/AHS Adaptive Structures Conference. Reston:AIAA Inc., 2014:0763.1-0763. 10.
[10] Lira C, Scarpa F, Tai Y H, et al. Transverse shear modulus of SILICOMB cellular structures[J]. Composites Science and Technology, 2011, 71(9):1236-1241.
[11] Neville R M, Monti A, Hazra K, et al. Transverse stiffness and strength of Kirigami zero-υ PEEK honeycombs[J]. Composite Structures, 2014, 114:30-40.
[12] Liu W D, Zhu H, Zhou S Q, et al. In-plane corrugated cosine honeycomb for 1D morphing skin and its application on variable camber wing[J]. Chinese Journal of Aeronautics, 2013, 26(4):935-942.
[13] Olympio K R, Gandhi F. Zero Poisson's ratio cellular honeycombs for flex skins undergoing one-dimensional morphing[J]. Journal of Intelligent Material Systems and Structures, 2010, 21(17):1737-1753.
[14] Zhang P, Zhou L, Qiu T. A new flexible honeycomb structure and its application in structure design of morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(1):156-163(in Chinese).张平,周丽,邱涛.一种新的柔性蜂窝结构及其在变体飞机中的应用[J].航空学报, 2011, 32(1):156-163.
[15] Cheng W J, Zhou L, Zhang P, et al. Design and analysis of a zero Poisson's ratio mixed cruciform honeycomb and its application in flexible skin[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):680-690(in Chinese).程文杰,周丽,张平,等.零泊松比十字形混合蜂窝设计分析及其在柔性蒙皮中的应用[J].航空学报, 2015, 36(2):680-690.
[16] Bubert E A, Woods B K S, Lee K, et al. Design and fabrication of a passive 1D morphing aircraft skin[J]. Journal of Intelligent Material Systems and Structures, 2010, 21(17):1699-1717.
[17] Heo H, Ju J, Kim D M. Compliant cellular structures:Application to a passive morphing airfoil[J]. Composite Structures, 2013, 106:560-569.
[18] Lu C, Li Y X, Dong E B, et al. Equivalent elastic modulus of zero Poisson's ratio honeycomb core[J].Journal of Material Engineering, 2013(12):80-84(in Chinese).鲁超,李永新,董二宝,等.零泊松比蜂窝芯等效弹性模量研究[J].材料工程, 2013(12):80-84.
[19] Olympio K R, Gandhi F. Flexible skins for morphing aircraft using cellular honeycomb cores[J]. Journal of Intelligent Material Systems and Structures, 2010, 21(17):1719-1735.
[20] Ju J, Summers J D, Ziegert J, et al. Design of honeycombs for modulus and yield strain in shear[J]. Journal of Engineering Materials and Technology, 2012, 134(1):011002/1-011002/15.
[21] Ju J, Summers J D. Compliant hexagonal periodic lattice structures having both high shear strength[J]. Materials and Design, 2011, 32(2):512-524.
/
〈 | 〉 |