高温燃气进入舵机舱过程仿真与流动机理分析
收稿日期: 2015-01-16
修回日期: 2015-03-01
网络出版日期: 2015-03-16
基金资助
航空科学基金 (2014ZA12001)
Numerical investigation and flow mechanism analysis of hot gas entering control section
Received date: 2015-01-16
Revised date: 2015-03-01
Online published: 2015-03-16
Supported by
Aeronautical Science Foundation of China (2014ZA12001)
采用计算流体力学(CFD)方法研究了火箭发动机工作拖尾段高温发动机燃气进入舵机舱的物理现象。结合导弹实际飞行弹道参数变化特点和超声速流场扰动不向前传递的空气动力学理论,提出了简化而不失真的非定常流场仿真方案,显著缩短了仿真周期;复现了某型导弹实际飞行时舵机舱先被"抽气"再进高温燃气的动态过程,并分析了高温发动机燃气进入舵机舱的流动机理,即在发动机工作段,导弹底端面压强低于舵机舱内压强,舵机舱被"抽气",在拖尾段随着燃烧室总压降低,喷口附近的马赫盘向导弹底端面移动,使导弹底端面压强增大且高于舵机舱内压强,高温燃气进入舵机舱烧毁电路致使导弹折断;明确了某型导弹折断故障产生的诱因,提出了改进措施和检测方法,并得到了大量飞行靶试的验证,解决了舵机舱热防护结构可靠性问题。
李斌 , 王学占 , 刘仙名 . 高温燃气进入舵机舱过程仿真与流动机理分析[J]. 航空学报, 2015 , 36(9) : 2840 -2849 . DOI: 10.7527/S1000-6893.2015.0055
The phenomenon of hot gas exhausted from the rocket engine flowing into the control section in the burnout phase of a rocket engine is studied using computational fluid dynamics (CFD) method. A simplified simulation method is proposed without much loss in accuracy after analyzing the parameters of the actual trajectory of a missile, based on the aerodynamic theory that disturbance in supersonic flow will not propagate upstream, and it greatly reduce the time cost. The dynamic progress that the air in the control section is first pumped out and the hot gas is sucked in afterward recurred, and flow mechanism is found out: during the working stage of the rocket engine, the air in the control section is pumped out due to the low pressure at the base of the missile, and then along with the reduction in the total pressure in the combustion chamber during the descending stage of the rocket the Mach disk moves towards the base which results in the increase of the base pressure, and finally the hot gas flows into the control section which causes the burning of the circuit board and then the fracture of the missile in the end. Finally the cause of failure is revealed, and the improvement measures and detection method are proposed and then validated in flight tests, the reliability of thermal protection is solved.
Key words: rocket motors; missile; supersonic; unsteady flow; computational fluid dynamics
[1] Fan H T, Lv C Q, Lin Z X. Design for air-to-air missile[M]. Beijing: National Defense Industry Press, 2007: 190 (in Chinese). 樊会涛, 吕长起, 林忠贤. 空空导弹系统总体设计[M].北京: 国防工业出版社, 2007: 190.
[2] Stein S, Thiokol M. Seal material selection, design and performance-advancements from the space shuttle booster redesign, AIAA-1989-2774[R]. Reston: AIAA, 1989.
[3] Fan H T. Air-to-air missile conceptual design[M]. Beijing: Aviation Industry Press, 2013: 160 (in Chinese). 樊会涛. 空空导弹方案设计原理[M]. 北京: 航空工业出版社, 2013: 160.
[4] Salita M. Unanticipated problems and misunderstood phenomena in and around solid rockets, AIAA-2011-5956[R]. Reston: AIAA, 2011.
[5] Loh H T, Smith-Kent R, Perkins F. Evaluation of aft skirt length effects on rocket motor base heat using computational fluid dynamics, AIAA-1996-2645[R]. Reston: AIAA, 1996.
[6] Shen C, Xia X L, Cao Z W, et al. Analysis of flow and heat characteristics of seal structure with gap and cavity under the impact of high speed airflow[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(1): 34-43 (in Chinese). 沈淳, 夏新林, 曹占伟, 等. 缝隙-腔体密封结构在高速气流冲击下的整体流动、传热特性分析[J]. 航空学报, 2012, 33(1): 34-43.
[7] Yan C. Application foundation of computational fluid dynamics[M]. Beijing: Beihang University Press, 2005: 24 (in Chinese). 阎超. 计算流体力学应用基础[M]. 北京: 北京航空航天大学出版社, 2005: 24.
[8] Anderson J D. Computational fluid dynamics: Basic and application[M]. Wu S P, Zhao L M, translated. Beijing: China Machine Press, 2007: 58 (in Chinese). Anderson J D. 计算流体力学: 基础与应用[M]. 吴颂平, 赵刘淼, 译. 北京: 机械工业出版社, 2007: 58.
[9] Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal,1994, 32(8): 1598-1605.
[10] Pointwise Inc. Pointwise user mannual. Software Release Version 17.2 R1[Z]. American Pointwise Inc. 2014: 317-330.
[11] Lebedev A A. Flight dynamics for unmanned aerial vehicals[M]. Beijing: National Defense Industry Press, 1964: 225 (in Chinese). 列别捷夫 A A.无人驾驶飞行器的飞行动力学[M]. 北京: 国防工业出版社, 1964: 225.
[12] Xu M, An X M. The analyses and computational method of aerodynamic characteristics of aircraft[M]. Xi'an: Northwestern Polytechnical University Press, 2012: 109 (in Chinese). 徐敏, 安效民. 飞行器空气动力特性分析与计算方法[M]. 西安: 西北工业大学出版社, 2012: 109.
[13] Tong B G, Kong X Y, Deng G H. Gas dynamics[M]. Beijing: Higher Education Press, 2012: 192 (in Chinese). 童秉纲, 孔祥言, 邓国华. 气体动力学[M]. 北京: 高等教育出版社, 2012: 192.
[14] Wu Z N. Aerodynamics[M]. Beijing: Tsinghua University Press, 2008: 34 (in Chinese). 吴子牛. 空气动力学[M]. 北京: 清华大学出版社, 2008: 34.
/
〈 | 〉 |