空域数据重排的后多普勒自适应处理方法
收稿日期: 2014-07-10
修回日期: 2015-01-03
网络出版日期: 2015-01-15
基金资助
国家自然科学基金 (61271293)
Post-Doppler adaptive processing method based on spatial data rearrangement
Received date: 2014-07-10
Revised date: 2015-01-03
Online published: 2015-01-15
Supported by
National Natural Science Foundation of China (61271293)
传统的后多普勒自适应处理方法,如因子法(FA)和扩展因子法(EFA)虽然能大大降低自适应处理时的运算量和独立同分布样本的需求量,但由于实际中均匀训练样本数目的限制,当天线阵元数进一步增大时,FA和EFA抑制杂波和检测动目标的能力会显著恶化。针对这一问题,提出了一种空域数据重排的后多普勒自适应处理方法。该方法将多普勒滤波后的空域数据重排为一行列数相近的矩阵,空域滤波器权系数也表示成可分离的形式,从而得到一双二次代价函数,利用循环迭代的思想求解权系数。实验表明该方法具有快速收敛,所需训练样本少的优点,尤其在大阵列、小样本条件下该方法抑制杂波的性能明显优于FA和EFA。
周延 , 冯大政 , 朱国辉 . 空域数据重排的后多普勒自适应处理方法[J]. 航空学报, 2015 , 36(9) : 3020 -3026 . DOI: 10.7527/S1000-6893.2015.0002
The traditional post-Doppler adaptive beam-forming approaches such as factored approach (FA) and extended factored approach (EFA) can significantly reduce the computation-complexity and training sample requirement in adaptive processing. However, their clutter suppression and moving target detection ability can be notably degraded with the increasing number of antenna elements since the homogeneous training samples in real clutter environment are always limited. Aimed at this problem, the post-Doppler adaptive processing method based on the spatial data rearrangement is proposed. This method rearranges the spatial data vector, after being filtered by Doppler, into a matrix that has close columns and rows. The spatial weights are also re-expressed as a separation form. Then a bi-quadratic cost function is obtained. The cyclic iteration is applied to solving the desired weight vector. Experimental results show that the proposed method has the advantages of fast convergence and small training sample requirement. It also has greater clutter suppression ability especially in large antenna array elements compared to FA and EFA.
[1] Brennan L E, Reed I S. Theory of adaptive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 1973, 9(2): 237-252.
[2] Klemm R. Space-time adaptive processing-principles and applications[M]. London: The Institute of Electrical Engineers, 2002: 101-104.
[3] Melvin W L. A STAP overview[J]. IEEE Aerospace and Electronics Systems Magazine, 2004, 21(1): 112-114.
[4] Wang H, Cai L. On adaptive spatial-temporal processing for airborne surveillance radar systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30 (3): 660-669.
[5] Haimovich A. The eigencanceler: Adaptive radar by eigenanalysis methods[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(2): 532-542.
[6] Reed I S, Mallet J D, Brennan L E. Rapid convergence rate in adaptive arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, 10(6): 853-863.
[7] Haimovich A. Asymptotic distribution of the conditional signal-to-noise ratio in an eigenanalysis-based adaptive array[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(3): 988-997.
[8] Brown R D, Schneible R A, Wicks M C, et al. STAP for clutter suppression with sum and difference beams[J]. IEEE Transactions on Aerospace and Electronics Systems, 2000, 36 (2): 634-646.
[9] Li J S, Sun J P, Mao S Y. An element error compensation STAP approach based on covariance matrix taper[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(7): 1292-1297 (in Chinese). 李京生, 孙进平, 毛士艺. 一种基于协方差矩阵加权的阵元误差补偿STAP处理[J]. 航空学报, 2009, 30(7): 1292-1297.
[10] Wang G, Lu Y. Clutter rank of STAP in MIMO radar with waveform diversity[J]. IEEE Transactions on Signal Processing, 2010, 58(2): 938-943.
[11] Aboutanios E, Mulgrew B. Hybrid detection approach for STAP in heterogeneous clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 1021-1033.
[12] Sun K, Meng H D, Wang Y L, et al. Direct data domain STAP using sparse representation of clutter spectrum[J]. Signal Processing, 2011, 91(9): 2222-2236.
[13] Ginolhac G, Forster P, Pascal F, et al. Performance of two low-rank STAP filters in a heterogeneous noise[J]. IEEE Transactions on Signal Processing, 2013, 61(1): 57-61.
[14] Cao Y, Feng D Z, Shui P L, et al. Space-time adaptive clutter canceller applied to airborne MIMO radar[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7): 1654-1662 (in Chinese). 曹杨, 冯大政, 水鹏朗, 等. 机载MIMO雷达空时自适应杂波对消器[J]. 航空学报, 2013, 34(7): 1654-1662.
[15] Tang B, Zhang Y, Li K. Adaptive clutter suppression research based on priori knowledge and its accuracy evaluation[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5): 1174-1180 (in Chinese). 唐波, 张玉, 李科. 基于先验知识及其定量评估的自适应杂波抑制研究[J]. 航空学报, 2013, 34(5): 1174-1180.
[16] Ginolhac G, Forster P, Pascal F, et al. Exploiting persymmetry for low-rank space time adaptive processing[J]. Signal Processing, 2014, 97(7): 242-251.
[17] Dippetro R C. Extended factored space-time processing for airborne radar system[C]//Proceedings of the 26th Asilomar Conference on Signals, Systems and Computers, 1992: 425-430.
[18] Bao Z, Liao G S, Wu R B, et al. 2-D temporal-spatial adaptive clutter suppression for phased array airborne radar[J]. Acta Electronica Sinica, 1993, 21(9): 1-7 (in Chinese). 保铮, 廖桂生, 吴仁彪, 等. 相控阵机载雷达杂波抑制的时空二维自适应滤波[J]. 电子学报, 1993, 21(9): 1-7.
[19] Stoica P,Selen Y. Cyclic minimizers, majorization techniques, and the expectation-maximization algorithm: A refresher[J]. IEEE Signal Processing Magazine, 2004, 21(1): 112-114.
/
〈 | 〉 |