流体力学与飞行力学

地月系统循环轨道初步设计与特性分析

  • 张文博 ,
  • 成跃 ,
  • 王宁飞
展开
  • 北京理工大学 宇航学院, 北京 100081
张文博 男, 博士研究生。主要研究方向: 深空探测轨道设计与优化。 Tel: 010-68918107 E-mail: bitvip@bit.edu.cn

收稿日期: 2014-08-01

  修回日期: 2014-12-16

  网络出版日期: 2014-12-24

Preliminary design and characteristic analysis of cycler orbits in Earth-Moon system

  • ZHANG Wenbo ,
  • CHENG Yue ,
  • WANG Ningfei
Expand
  • School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China

Received date: 2014-08-01

  Revised date: 2014-12-16

  Online published: 2014-12-24

摘要

基于平面圆型限制性三体问题(CR3BP)模型,根据轨道弧以及顺行和逆行特征采用圆锥曲线拼接法设计了5类地月系统周期轨道。以地月系统循环轨道的工程约束为出发点,从轨道周期、近地点高度、近月点高度、交会对接速度、轨道稳定性等方面分析了这5类周期轨道的特性,从中选择了适合地月系统循环轨道任务方案的周期轨道,并对周期轨道进行了优化。该研究为我国未来载人登月工程提供了一种新的思路与理论技术支持。

本文引用格式

张文博 , 成跃 , 王宁飞 . 地月系统循环轨道初步设计与特性分析[J]. 航空学报, 2015 , 36(7) : 2197 -2206 . DOI: 10.7527/S1000-6893.2014.0349

Abstract

According to arcs that belong to the generating orbit of the second species and direction of motion, five types of period orbits are designed by patched conic technique based on planar circular restricted three-body problem (CR3BP) model. Characteristics of five types of period orbits are analyzed from the aspects of period time, perigee distance, perilune distance, the speed of rendezvous and docking, as well as stability of the orbits. A proper type of orbits is selected for the mission considering the engineering constraints of cycler architecture. Then the cycler orbit selected from the proper type is optimized to meet the requirements of the mission. This study and survey about cycler orbits in the Earth-Moon system could provide a new insight into and reference for the manned lunar landing project of China in future.

参考文献

[1] Schwaniger A J. Trajectories in the Earth-Moon space with symmetrical free return properties[M]. Washington, D.C.: NASA, 1963.
[2] Berry R L. Launch window and translunar, lunar orbit, and transearth trajectory planning and control for the Apollo 11 lunar landing mission, AIAA-1970-0024[R]. Reston: AIAA, 1970.
[3] Jesick M, Ocampo C. Automated generation of symmetric lunar free-return trajectories[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(1): 98-106.
[4] Li J Y, Gong S, Baoyin H. Generation of multisegment lunar free-return trajectories[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(3): 765-775.
[5] Aldrin B. Cyclic trajectory concepts[C]//SAIC Presentation to the Interplanetary Rapid Transit Study Meeting. Pasadena: Jet Propulsion Laboratory, 1985.
[6] Friedlander A L, Niehoff J C, Byrnes D V, et al. Circulating transportation orbits between Earth and Mars, NASA7-918 and NASW-3622[R]. Washington, D.C.: NASA, 1986.
[7] Lo M W, Parker J S. Unstable resonant orbits near Earth and their applications in planetary missions, AIAA-2004-5304[R]. Reston: AIAA, 2004.
[8] Vaquero M, Howell K C. Design of transfer trajectories between resonant orbits in the Earth-Moon restricted problem[J]. Acta Astronautica, 2014, 94(1): 302-317.
[9] Poincaré H. Les méthodes nouvelles de la mécanique céleste: Méthodes de MM. Newcomb, Glydén, Lindstedt et Bohlin[M]. Paris: Gauthier-Villars et fils, 1893.
[10] Broucke R A. Periodic orbits in the restricted three-body problem with Earth-Moon masses[R]. Pasadena: California Institute of Technology, 1968.
[11] Henrard J. On Poincaré's second species solutions[J]. Celestial Mechanics, 1980, 21(1): 83-97.
[12] Perko L. Periodic orbits in the restricted three-body problem: existence and asymptotic approximation[J]. SIAM Journal on Applied Mathematics, 1974, 27(1): 200-237.
[13] Guillaume P. Linear analysis of one type of second species solutions[J]. Celestial Mechanics, 1975, 11(2): 213-254.
[14] Guillaume P. The restricted problem: an extension of Breakwell-Perko's matching theory[J]. Celestial Mechanics, 1975, 11(4): 449-467.
[15] Bruno A. On periodic flybys of the moon[J]. Celestial Mechanics, 1981, 24(3): 255-268.
[16] Font J, Nunes A, Simó C. Consecutive quasi-collisions in the planar circular RTBP[J]. Nonlinearity, 2002, 15(1): 115.
[17] Barrabés E, Gómez G. Three-dimensional p-q resonant orbits close to second species solutions[J]. Celestial Mechanics and Dynamical Astronomy, 2003, 85(2): 145-174.
[18] Casoliva J, Mondelo J M, Villac B F, et al. Two classes of cycler trajectories in the Earth-Moon system[J]. Journal of Guidance, Control, and Dynamics, 2010, 33 (5): 1623-1640.
[19] McConaghy T T, Yam C H, Landau D F, et al. Two synodic-period Earth-Mars cyclers with intermediate Earth encounter, AAS 03-509[R]. San Diego: AAS Publications Office, 2003.
[20] Russell R P, Ocampo C A. Systematic method for constructing Earth-Mars cyclers using free-return trajectories[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(3): 321-335.
[21] Russell R P, Ocampo C A. Global search for idealized free-return Earth-Mars cyclers[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(2): 194-208.
[22] McConaghy T T, Longuski J M. Analysis of a class of Earth-Mars cycler trajectories[J]. Journal of Spacecraft and Rockets, 2004, 41(4): 622-628.
[23] Szebehely V. Theory of orbits: the restricted problem of three bodies[M]. New York: Academic Press, 1967.
[24] Celletti A, Stefanelli L, Lega E, et al. Some results on the global dynamics of the regularized restricted three-body problem with dissipation[J]. Celestial Mechanics and Dynamical Astronomy, 2011, 109(3): 265-284.
[25] Pavlak T A. Trajectory design and orbit maintenance strategies in multi-body dynamical regimes[D]. Lafayette: Purdue University, 2013.
[26] Hénon M. Generating families in the restricted three-body problem[M]. Berlin: Springer, 1997.
[27] Edery A. Analytical expressions for the semimajor axis and eccentricity after a lunar gravity assist[R]. Lanham: a. i-solutions Inc., 2002.

文章导航

/