流体力学与飞行力学

用虚拟黏性法构造Navier-Stokes方程黏性项的隐式格式

  • 董海涛 ,
  • 刘丁松
展开
  • 北京航空航天大学 航空科学与工程学院, 北京 100191

收稿日期: 2014-09-01

  修回日期: 2014-12-12

  网络出版日期: 2014-12-15

Implicit scheme for viscosity item of Navier-Stokes equations with pseudo-viscosity method

  • DONG Haitao ,
  • LIU Dingsong
Expand
  • School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China

Received date: 2014-09-01

  Revised date: 2014-12-12

  Online published: 2014-12-15

摘要

提出的虚拟黏性法是一种关于Navier-Stokes方程黏性项(黏性应力项和传热项)的隐式新方法。通过引入虚拟时间和虚拟黏性项,将隐式格式的构造大大简化,从而避免了大型复杂隐式差分方程组的常规求解。在虚拟时间推进过程中所需求解的方程组的系数矩阵是一个三对角矩阵,它具有计算简单且计算量小的优点。用模型方程和Navier-Stokes方程进行了数值仿真,研究各种参数对计算的影响,并在精度和效率上与显式方法进行比较,证实了算法的正确性和优势。最后分析了本文格式的适用范围。

本文引用格式

董海涛 , 刘丁松 . 用虚拟黏性法构造Navier-Stokes方程黏性项的隐式格式[J]. 航空学报, 2015 , 36(7) : 2186 -2196 . DOI: 10.7527/S1000-6893.2014.0344

Abstract

In this paper, a new algorithm called pseudo-viscosity method is introduced. It is a new concept used to construct implicit finite difference scheme about the viscosity item of Navier-Stokes equations. The construction of implicit scheme is greatly simplified via introducing pseudo-time and pseudo-viscosity item. Thus, the common way of getting solutions of large complex implicit finite difference equations is avoided. And a tridiagonal matrix is generated for the coefficient matrix of implicit finite difference equations. It can be solved easily and has a little operation counts. Numerical simulation are made for this implicit scheme in model equation and Navier-Stokes equations. The effects of parameters in this implicit scheme are discussed with numerical simulation. What's more, the accuracy and efficiency are compared with explicit scheme to prove the validity and advantage of the implicit scheme. Finally, conditions for using this implicit scheme are analyzed in detail.

参考文献

[1] Si H Q, Wang T G. Solver of three-dimensional Navier-Stokes equations based on the fully implicit unfactored algorithm[J]. Chinese Journal of Computational Mechanics, 2009, 26(2): 252-257 (in Chinese). 司海清, 王同光. 基于全隐式无分裂算法求解三维N-S方程[J]. 计算力学学报, 2009, 26(2): 252-257.
[2] Pullian T H, Chaussee D S. A diagonal form of an implicit approximate factorization algorithm[J]. Journal of Computational Physics, 1981, 39(2): 347-363.
[3] Yoon S, Jameson A. Lower-upper symmetric-Gauss-Seidel method for the Euler and Navier-Stoker equations[J]. AIAA Journal, 1988, 26(9): 1025-1026.
[4] MacCormack R W. A numerical method for solving the equations of compressible viscous flow, AIAA-1981-0110[R]. Reston: AIAA, 1981.
[5] Jameson A. Time dependent calculation using multigrid with applications to unsteady flows past airfoils and wings, AIAA-1991-1596[R]. Reston: AIAA, 1991.
[6] Chen J L, Han Y R. Modern applied mathematics handbook—modern applied analysis volume[M]. Beijing: Tsinghua University Press, 1998: 182-185 (in Chinese). 陈景良, 韩云瑞. 现代应用数学手册——现代应用分析卷[M]. 北京: 清华大学出版社, 1998: 182-185.
[7] Harten A. High resolution schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 1983, 49(3): 357-393.
[8] van Leer B. Towards to the ultimate conservation difference schemes. V. a second-order sequel to Godunov method[J]. Journal of Computational Physics, 1979, 32(1): 101-136.
[9] Liu X D, Osher S, Chan T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115(1): 200-212.
[10] Roe P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2): 357-372.
[11] Dong H T, Zhang L D, Li C X. High order discontinuities decomposition entropy condition schemes for Euler equations[J]. Computational Fluid Dynamics Journal, 2002, 10(4): 448-457.
[12] Zhao H Y, Le J L. Application analysis on dual-time stepping[J]. Chinese Journal of Computational Physics, 2008, 25(3): 253-258 (in Chinese). 赵慧勇, 乐嘉陵. 双时间步方法的应用分析[J]. 计算物理, 2008, 25(3): 253-258.
[13] Zhang D L. A course in computational fluid dynamics[M]. Beijing: Higher Education Press, 2010: 143-144 (in Chinese). 张德良. 计算流体力学教程[M]. 北京: 高等教育出版社, 2010: 143-144.
[14] Zhang H, Tan H J, Sun S. Characteristics of shock-train in a straight isolator with interference of incident shock waves and corner expansion waves[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(9): 1733-1739 (in Chinese). 张航, 谭慧俊, 孙姝. 进口斜激波、膨胀波干扰下等直隔离段内的激波串特性[J]. 航空学报, 2010, 31(9): 1733-1739.
[15] Su M D, Kang Q J. Large eddy simulation of the turbulent flow around a circular cylinder at subcritical Reynolds numbers[J]. Acta Mechanica Sinica, 1999, 31(1): 100-105 (in Chinese). 苏铭德, 康钦军. 亚临界雷诺数下圆柱绕流的大涡模拟[J]. 力学学报, 1999, 31(1): 100-105.
[16] Zhang Q F, He H T, Lu Z Y. Numerical study on two-dimensional laminar flow and control over a circular cylinder[J]. Science Technology and Engineering, 2009, 9(5): 1187-1193 (in Chinese). 张群峰, 何鸿涛, 吕志咏. 二维圆柱层流绕流及其控制数值模拟[J]. 科学技术与工程, 2009, 9(5): 1187-1193.
[17] Radespiel R. A cell-vertex multigrid method for the Navier-Stokes equations, NASA-TM-101557[R]. Washington, D.C.: NASA, 1988.
[18] Cannizzaro F E. Investigation of upwind, multigrid, multi-block numerical schemes for three demensional flows, Volume I: Runge-Kutta methods for a thin layer Navier-Stokes solver, NASA-R-191648[R]. Washington, D.C.: NASA, 1992.
[19] MacCormack R W. Current status of numerical solutions of the Navier-Stokes equations, AIAA-1985-0032[R]. Reston: AIAA, 1985.
[20] Zhang H X, Guo C, Zong W G. Problems about grid and high order schemes[J]. Acta Mechanica Sinica, 1999, 31(4): 398-405 (in Chinese). 张涵信, 呙超, 宗文刚. 网格与高精度差分计算问题[J]. 力学学报, 1999, 31(4): 398-405.

文章导航

/