材料工程与机械制造

耦合几何与材料误差的柔性装配偏差统计分析

  • 陈晖 ,
  • 谭昌柏 ,
  • 王志国
展开
  • 南京航空航天大学 机电学院, 南京 210016
陈晖 男, 硕士研究生。主要研究方向: 柔性件装配偏差建模与分析。 Tel: 025-84891678 E-mail: chenhuinuaa@163.com;王志国 男, 博士, 副教授, 硕士生导师。主要研究方向: 基于关键特性的产品装配质量管理、计算机辅助设计与制造。 Tel: 025-84891678 E-mail: wzgnuaa@nuaa.edu.cn

收稿日期: 2014-09-11

  修回日期: 2014-10-31

  网络出版日期: 2014-11-18

基金资助

国家自然科学基金 (51275236); 航空科学基金 (2012ZE66016)

Statistical variation analysis of compliant assembly coupling geometrical and material error

  • CHEN Hui ,
  • TAN Changbai ,
  • WANG Zhiguo
Expand
  • College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2014-09-11

  Revised date: 2014-10-31

  Online published: 2014-11-18

Supported by

National Natural Science Foundation of China (51275236); Aeronautical Science Foundation of China (2012ZE66016)

摘要

飞机结构中包含大量的弱刚性柔性零件,柔性零件在装配中的受力变形,是影响飞机尺寸质量的重要因素。针对仅考虑零件几何误差进行装配偏差建模的不足,结合一阶摄动理论和有限元方法,提出了耦合柔性零件几何和材料误差的装配偏差统计分析(SVA_G&M)方法。该方法运用影响系数法建立零件几何、弹性模量和泊松比误差与装配偏差的关系,在此基础上利用泰勒公式推导了装配偏差的均值和协方差方程。结合薄板、某飞机平尾前缘组件两个装配实例,将该方法与基于ANSYS的有限元装配过程仿真法进行了实验对比。结果表明,两种方法计算得到的装配偏差均值和标准差非常吻合,但在计算时间上前者只用了30 s,而后者用了250 min,前者算法效率远高于后者。实验还表明材料误差对装配偏差具有明显影响,其中弹性模量的影响大于泊松比,与仅考虑几何误差的装配偏差分析方法相比,该方法对装配偏差的预测更加真实准确。

本文引用格式

陈晖 , 谭昌柏 , 王志国 . 耦合几何与材料误差的柔性装配偏差统计分析[J]. 航空学报, 2015 , 36(9) : 3176 -3186 . DOI: 10.7527/S1000-6893.2014.0306

Abstract

Compliant part is widely used in aircraft structure. Its deformation subjected to assembly forces is an important issue in assembly dimensional management for aircraft. To compensate for the deficiencies of assembly variation model concerning merely geometrical error of part, a method of statistical variation analysis for compliant assembly coupling the geometrical and material error (SVA_G&M) is proposed based on the first-order perturbation theory and the finite element method. In the SVA_G&M method, the method of influence coefficients is adopted to deduce the assembly variation regarding the source errors of part geometrical shape, material elastic modulus and Poisson's ratio, and the mean and standard deviation equations of assembly variation are formulated. Two experiments, simple sheet metals assembly and leading edge assembly of aircraft horizontal tail, are illustrated to verify the proposed method, and it is compared to the assembly process simulation of ANSYS finite element method (FEM). The result shows that the mean and standard by the SVA_G&M method has a good agreement with the FEM simulation. Meanwhile, the computing time is 30 s and 250 min respectively, which indicates that the SVA_G&M method is much more efficient than the FEM simulation. The experiments also show that material error has a considerable effect on assembly variation, in which elastic modulus plays a more important role than Poisson's ratio. Compared to assembly variation model concerning merely geometrical error, the SVA_G&M method can make more accurate and practical variation prediction of compliant assembly.

参考文献

[1] Liu S C, Hu S J, Woo T C. Tolerance analysis for sheet metal assemblies[J]. Journal of Mechanical Design, 1996, 118(1): 62-76.
[2] Hu S J, Koren Y. Stream-of-variation theory for automotive body assembly[J]. CIRP Annals-Manufacturing Technology, 1997, 46(1): 1-6.
[3] Liu S C, Hu S J. Variation simulation for deformable sheet metal assemblies using finite element methods[J]. Journal of Manufacturing Science and Engineering, 1997, 119(3): 368-374.
[4] Merkley K G, Chase K W, Perry E. An introduction to tolerance analysis of flexible systems[C]//MSC World Users' Conference. Newport Beach, CA: MSC Software Corp, 1996.
[5] Merkley K G. Tolerance analysis of compliant assemblies[D]. Provo: Brigham Young University, 1998.
[6] Bihlmaier B F. Tolerance analysis of flexible assemblies using finite element and spectral analysis[D]. Provo: Brigham Young University, 1999.
[7] Tonks M R, Chase K W. Covariance modeling method for use in compliant assembly tolerance analysis[C]//Proceedings of ASME Design Engineering Technical Conference. Salt Lake City: ASME, 2004: 1-7.
[8] Tonks M R, Chase K W, Smith C C. Predicting deformation of compliant assemblies using covariant statistical tolerance analysis[J]. Models for Computer Aided Tolerancing in Design and Manufacturing, 2007: 321-330.
[9] Mortensen A J. An integrated methodology for statistical tolerance analysis of flexible assemblies[D]. Provo: Brigham Young University, 2000.
[10] Stewart M L. Variation simulation of fixtured assembly processes for compliant structures using piecewise-linear analysis[D]. Provo: Brigham Young University, 2004.
[11] Xing Y F, Zhao X Y, Wu W W. Assembly variation analysis model based on fixture configurations for sheet metal parts[J]. Computer Integrated Manufacturing Systems, 2010, 16(2): 280-286 (in Chinese). 邢彦锋, 赵晓昱, 吴伟蔚. 基于夹具配置的薄板件装配偏差分析模型[J]. 计算机集成制造系统, 2010, 16(2): 280-286.
[12] Cheng H, Li Y, Zhang K F, et al. Efficient method of positioning error analysis for aeronautical thin-walled structures multi-state riveting[J]. The International Journal of Advanced Manufacturing Technology, 2011, 55: 217-233.
[13] Chen Z H, Du F Z, Tang X Q. Research on uncertainty in measurement assisted alignment in aircraft assembly[J]. Chinese Journal of Aeronautics, 2013, 26(6): 1568-1576.
[14] Tian W, Zhou W X, Zhou W, et al. Auto-normalization algorithm for robotic precision drilling system in aircraft component assembly[J]. Chinese Journal of Aeronautics, 2013, 26(2): 495-500.
[15] Chen Z H, Du F Z, Tang X Q. Key measurement characteristics based inspection data modeling for aircraft assembly[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11): 2143-2152 (in Chinese). 陈哲涵, 杜福洲, 唐晓青. 基于关键测量特性的飞机装配检测数据建模研究[J]. 航空学报, 2012, 33(11): 2143-2152.
[16] Ni J, Tang W C, Xing Y. Three-dimensional precision analysis with rigid and compliant motions for sheet metal assembly[J]. The International Journal of Advanced Manufacturing Technology, 2014, 73(5-8): 805-819.
[17] Lin J, Jin S, Zheng C, et al. Compliant assembly variation analysis of aeronautical panels using unified substructures with consideration of identical parts[J]. Computer-Aided Design, 2014, 57: 29-40.
[18] Yu K G, Yang Z H. Tolerance design of automotive body sheet metal parts based on a compliant assembly variation model[J]. Journal of Shandong University: Engineering Science, 2014, 44(3): 69-74 (in Chinese). 于奎刚, 杨志宏. 基于柔性装配偏差模型的汽车车身薄板零件公差设计[J]. 山东大学学报: 工学版, 2014, 44(3): 69-74.
[19] Yu K G, Jin S, Lai X M, et al. Modeling and analysis of compliant sheet metal assembly variation[J]. Assembly Automation, 2008, 28(3): 225-234.
[20] Wang S F, Zhao H L. Reliablity analysis of railway vehicle structure based on stochastic finite element[J]. Journal of Tongji University: Natural Science, 2010, 38(11): 1631-1634 (in Chinese). 王社峰, 赵洪伦. 基于随机有限元的车辆结构可靠度分析研究[J]. 同济大学学报: 自然科学版, 2010, 38(11): 1631-1634.
[21] Chen Q, Liu X B. Stochastic finite element method and its engineering application[M]. Chengdu: Southwest Jiaotong University Press, 1993: 79-104 (in Chinese). 陈虬, 刘先斌. 随机有限元法及其工程应用[M]. 成都: 西南交通大学出版社, 1993: 79-104.

文章导航

/