流体力学与飞行力学

稀薄气体动力学的非线性耦合本构方程理论及验证

  • 肖洪 ,
  • 商雨禾 ,
  • 吴迪 ,
  • 师羊羊
展开
  • 1. 西北工业大学 动力与能源学院, 西安 710072;
    2. 庆尚国立大学 机械与航空工程系, 晋州 660701

收稿日期: 2014-08-14

  修回日期: 2014-10-29

  网络出版日期: 2014-11-02

基金资助

韩国国家自然科学基金 (2012-R1A2A2A02-046270)

Nonlinear coupled constitutive relations and its validation for rarefied gas flows

  • XIAO Hong ,
  • SHANG Yuhe ,
  • WU Di ,
  • SHI Yangyang
Expand
  • 1. School of Power and Energy, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Department of Aerospace & System Engineering, Gyeongsang National University, Jinju 660701, South Korea

Received date: 2014-08-14

  Revised date: 2014-10-29

  Online published: 2014-11-02

Supported by

National Research Foundation of Korea (2012-R1A2A2A02-046270)

摘要

作为一种新兴的气体动力学本构方程理论体系,非线性耦合本构方程(NCCR)理论的创新之处在于黏性应力和热传导中抛弃了广义牛顿定律和傅里叶热传导定律,而是考虑熵条件从Boltzmann方程直接推导出了黏性应力和热传导非线性耦合输运方程即NCCR模型。NCCR模型在连续区域与广义牛顿定律和傅里叶热传导定律一致, 但是在稀薄区域其非线性关系逐渐增强,即NCCR模型大大扩展了应力-应变和热传导-温度梯度的本构关系,为稀薄气体流动模拟提供了新的途径。为解决NCCR模型强非线性难题,发展了混合模态间断伽辽金求解NCCR和流动守恒方程的数值算法,成功避免了NCCR边界条件高阶量赋值的难题。并对典型亚声速、超声速NACA0012翼型绕流、高超声速圆柱绕流、极高马赫数圆柱绕流、微尺度激波-涡干涉、连续稀薄渐变算例、方腔流动进行了数值计算和验证。结果表明,在稀薄区域,NCCR模型准确捕捉到了流场信息,吻合于蒙特卡罗直接模拟(DSMC)或实验结果,包括:压力分布、速度分布、温度分布、壁面热流等。对圆柱绕流的进一步研究发现NCCR在低努森数下与Navier-Stokes方程结果相同,随着努森数升高两者差距逐渐扩大且在高努森数下NCCR吻合于DSMC和实验结果,从侧面证明了基于NCCR理论用同一套方程解决连续稀薄耦合流动的可能性。

本文引用格式

肖洪 , 商雨禾 , 吴迪 , 师羊羊 . 稀薄气体动力学的非线性耦合本构方程理论及验证[J]. 航空学报, 2015 , 36(7) : 2091 -2104 . DOI: 10.7527/S1000-6893.2014.0300

Abstract

Being the new constitutive equations for gas flow, the innovation of nonlinear coupled constitutive relations (NCCR)lies in the transport equations of viscous stress and thermal conduction, which are derived from Boltzmann equations by consideration of the entropy and expressed in terms of nonlinear coupled functions. In the continuum state, the NCCR shows linear relations in viscous stress and thermal conduction which is the same as the classical Navier-Stokes equations using Newtonian law of viscosity and the Fourier law of heat conduction. And, in the rarefied state, the relations of viscous stress and thermal conduction become more nonlinear. So, the constitutive relations are extended greatly by NCCR. To solve the high nonlinear of NCCR equations, mixed modal discontinues Galerkin method is proposed in solving the conservation laws with NCCR in which the setting of viscous stress and heat flux on the solid wall are avoided. Numerical study and validations are conducted in subsonic, supersonic and hypersonic gas flows around a cylinder, NACA0012 airfoil and cavity flow. Investigations show that NCCR can capture detailed flow properties which include pressure distribution, contour of velocity, density and temperature, as well as heat flux in solid wall and the NCCR data are closed to those of direct simulation of Monto Carlo (DSMC) or experiment while Navier-Stokes fails. Furthermore, numerical studies on gas flow around a cylinder also show that NCCR results are the same as that of Navier-Stokes in continuum state and the difference becomes to be distinguished with Knudsen number increasing. It can be concluded that NCCR provides a new method to solve continuum-rarefied gas flows.

参考文献

[1] Bird G A. Molecular gas dynamics and the direct simulation of gas flows[M]. 2nd ed.Oxford: Claredon Press,1994.
[2] Bird G A. The DSMC method[M].Version 1.1. Oxford: Claredon Press, 2013.
[3] Fan J, Boyd I D, Cai C P, et al. Computation of rarefied gas flows around a NACA 0012 airfoil[J]. AIAA Journal, 2001, 39(4): 618-625.
[4] Sun Q H, Boyd I D. Flat-plate aerodynamics at very low Reynolds number[J]. Journal of Fluid Mechanics, 2004, 502: 199-206.
[5] Frezzotti A, Ghiroldi G P, Gibelli L. Solving the Boltzmann equation on GPUs[J]. Computer Physics Communications, 2011, 182(12): 2445-2453.
[6] Bellouquid A, Calvo J, Nieto J, et al. On the relativistic BGK-Boltzmann model: asymptotics and hydrodynamics[J]. Journal of Statistical Physics, 2012, 149(2): 284-316.
[7] Torrilhon M, Struchtrup H. Boundary conditions for regularized 13-moment-equations for micro-channel-flows[J]. Journal of Computational Physics, 2008, 227(3): 1982-2011.
[8] Wu J S, Lian Y Y, Cheng G. Development and verification of a coupled DSMC-NS scheme using unstructured mesh[J]. Journal of Computational Physics, 2006, 219(2): 579-607.
[9] Nabovati A, Sellan D P, Amon C H. On the lattice Boltzmann method for phonon transport[J]. Journal of Computational Physics, 2011, 230(15): 5864-5876.
[10] Bao F B, Lin J Z. Burnett simulation of gas flow in micro channels[J]. Fluid Dynamics Research, 2008, 40(9): 679-694.
[11] Liu S, Yu P B, Xu K, et al. Unified gas kinetic scheme for diatomic molecular aimulations in all flow regimes[J]. Journal of Computational Physics, 2014, 259: 96-113.
[12] Eu B C. Kinetic theory and irreversible thermodynamics[M]. Candana: Wiley, 1992: 358-359, 365-370, 377-379.
[13] Myong R S. Thermodynamically consistent hydrodynamic computational models for high-Knudsen-number gas flows[J]. Physics of Fluids, 1999, 11(9): 2788-2802.
[14] Myong R S. A computational method for Eu's generalized hydrodynamic equations of rarefied and microscale gasdynamics[J]. Journal of Computational Physics, 2001, 168(1): 47-72.
[15] Myong R S. A generalized hydrodynamic computational model for rarefied and microscale diatomic gas flows[J]. Journal of Computational Physics, 2004,195(2): 655-676.
[16] Michelle Y. An experimental rocket model and numerical plume boundary studies for under-expanded flow[D]. Sydney: The University of New South Wales, 2011.
[17] Choe D S. Numerical investigation of rarefied nozzle flows by Eu's generalized hydrodynamic equations[D]. Seoul: Seoul National University, 2001.
[18] Myong R S. Impact of computational physics on multi-scale CFD and related numerical algorithms[J]. Computers & Fluids, 2011, 45(1): 64-69.
[19] Myong R S. On the high Mach number shock structure singularity caused by overreach of Maxwellian molecules[J]. Physics of Fluids, 2014, 26(5): 056102-1-18.
[20] Le N T P, Xiao H, Myong R S. A triangular discontinuous Galerkin method for non Newtonian implicit constitutive models of rarefied and microscale gases [J]. Journal of Computational Physics, 2014, 273: 160-184.
[21] Comeaux K A, Chapman D R, MacCormack R W. An analysis of the Burnett equations based on the second law of thermodynamics, AIAA-1995-0415[R]. Reston: AIAA, 1995.
[22] Balakrishnan R, Agarwal R K, Yun K Y. Higher-order distribution functions, BGK-Burnett equations and Boltzmann's H-Theorem, AIAA-1997-2551[R]. Reston: AIAA, 1997.
[23] Torrilhon M. Special issues on moment methods in kinetic gas theory[J]. Continuum Mechanics and Thermodynamics, 2009, 21(5): 341-343.
[24] Myong R S, Xiao H, Singh S. A new near-equilibrium breakdown parameter based on the rayleigh-onsager dissipation function[C]//The 29th International Symposium on Rarefied Gas Dynamics, 2014.
[25] Bassi F, Rebay S. A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations[J]. Journal of Computational Physics, 1997, 131(2): 267-279.
[26] Cockburn B, Shu C W. Runge-Kutta discontinuous Galerkin methods for convection dominated problems[J]. Journal of Science Computation, 2001,16(3): 173-261.
[27] Le N T P, White C, Reese J M, et al. Langmuir-Maxwell and Langmuir-Smoluchowski boundary conditions for thermal gas flow simulations in hypersonic aerodynamics[J]. International of Journal of Heat Mass Transfer, 2012, 55(19-20): 5032-5043.
[28] Allegre J, Raffin M, Gottesdient L. Slip effect on supersonic flowfields around NACA 0012 airfoils[C]//15th International Symposium on Rarefied Gas Dynamics. Cercigani: Rarefied Gas Dynamics, 1986: 548-557.
[29] Xiao H, Singh S, Karchani A, et al. Applications of a discontinuous galerkin method for compressible non-newtonian implicit constitutive models[C]//The 10th Asian Computational Fluid Dynamics Conference, 2014.
[30] Koffi K, Andreopoulos Y, Watkins C B. Dynamics of microscale shock/vortex interaction[J]. Physics of Fluids, 2008, 20(12): 126102.
[31] Xiao H, Myong R S. Computational simulations of microscale shock-vortex interaction using a mixed discontinuous Galerkin method[J].Computers & Fluids, 2014, 105:179-193.
[32] Hadjiconstantinou N G. The limits of Navier-Stokes theory and kinetic extensions for describing small-scale gaseous hydrodynamics[J].Physics of Fluids, 2006, 18(11): 111301.
[33] Qi Z G. Direct simulation Monte Carlo on miero-and nanoscalegas flow and heat transfer[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2007 (in Chinese). 祁致国. 微尺度气体流动与传热的直接Monte Carlo方法模拟[D]. 北京: 中国科学院工程热物理所, 2007.

 

文章导航

/