气动弹性力学

基于CFD降阶模型的阵风减缓主动控制研究

  • 聂雪媛 ,
  • 杨国伟
展开
  • 中国科学院 力学研究所 流固耦合系统力学重点实验室, 北京 100190
聂雪媛 女, 博士, 助理研究员。主要研究方向: 气动弹性及主动控制技术。Tel: 010-82544007 E-mail: niexueyuan@imech.ac.cn;杨国伟 男, 博士, 研究员, 博士生导师。主要研究方向:计算流体力学,气动优化设计等。Tel: 010-82544006 E-mai: gwyang@imech.ac.cn

收稿日期: 2014-08-01

  修回日期: 2014-08-18

  网络出版日期: 2014-09-12

Gust alleviation active control based on CFD reduced-order models

  • NIE Xueyuan ,
  • YANG Guowei
Expand
  • Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

Received date: 2014-08-01

  Revised date: 2014-08-18

  Online published: 2014-09-12

摘要

飞行器飞行时会受到大气紊流的影响,降低飞行品质。阵风减缓控制是改善飞行器飞行性能的关键技术。现有的阵风响应分析多以离散阵风为研究对象,对更加真实描述大气紊流的连续型阵风时域分析关注较少。采用成形滤波器方法将频域形式给出的大气紊流信号转换为时域信号。在跨声速区域内,利用系统辨识技术,基于计算流体力学(CFD)方法建立阵风激励下的气动载荷状态空间降阶模型(ROM)。为方便控制器设计,借助平衡模态法进行模型的进一步降阶。使用模型预测控制(MPC)算法通过控制操纵面偏转实现阵风减缓主动控制。以AGARD445.6标模作为仿真算例,验证基于ROM设计的阵风减缓控制律的有效性。仿真结果表明,在跨声速飞行状态下,模型预测控制器能够在满足操纵面偏转范围的约束下,对连续阵风激励下的翼根弯矩输出进行有效抑制。

本文引用格式

聂雪媛 , 杨国伟 . 基于CFD降阶模型的阵风减缓主动控制研究[J]. 航空学报, 2015 , 36(4) : 1103 -1111 . DOI: 10.7527/S1000-6893.2014.0192

Abstract

In flight, aircraft suffers atmospheric turbulence and the flight quality degrades. Gust load alleviation is an important technique for improving the performance of aircraft. Most of the existing gust response analysis focuses on discrete gust while study on continuous gust attracts little attention. The continuous turbulence time domain signals can be obtained with the shaping filter. In transonic regime, computational fluid dynamics (CFD)-based gust loads reduced-order models (ROM) in the state-space form are built by the system identification method. Furthermore, to design a feasible controller, the balanced truncation approach is used to reduce the model order. Model predictive control (MPC) algorithm is adopted to control the deflection of the control surface so that gust load alleviation is realized. The AGARD445.6 wing configuration is used as a numerical example to demonstrate the present gust ROM methodology and alleviation effects. It has been shown that the gust ROM with MPC law can suppress the wing root bending moment effectively; meanwhile, the deflection of the control surface can satisfy the hard constrain.

参考文献

[1] Chen L, Wu Z G, Yang C, et al. Active control and wind tunnel test verification of multi control surfaces wing for gust alleviation[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(12): 2250-2256 (in Chinese). 陈磊, 吴志刚, 杨超, 等. 多控制面机翼阵风减缓主动控制与风洞试验验证[J]. 航空学报, 2009, 30(12): 2250-2256.
[2] Zhang W, Zhang W W, Quan J G, et al. Gust alleviation of transonic wing[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 962-969 (in Chinese). 张慰, 张伟伟, 全景阁, 等. 跨声速机翼阵风减缓研究[J]. 力学学报, 2012, 44(6): 962-969.
[3] Raveh D E. CFD-based models of aerodynamic gust response, AIAA-2006-2022[R]. Reston: AIAA, 2006.
[4] Chen G, Wang X, Li Y M. A reduced-order-model-based multiple-in multiple-out gust alleviation control law design method in transonic flow[J]. Science China Technological Sciences, 2014, 57(2): 368-378.
[5] Moulin B, Karpel M. Gust loads alleviation using special control surfaces[J]. Journal of Aircraft, 2007, 44(1): 17-24.
[6] Shao K, Wu Z G, Yang C, et al. Design of an adaptive gust response alleviation control system: simulations and experiments[J]. Journal of Aircraft, 2010, 47(3): 1022-1029.
[7] Ricci S, Scotti A. Gust response alleviation on flexible aircraft using multi-surface control, AIAA-2010-3117[R]. Reston: AIAA, 2010.
[8] Zeng J, Moulin B, Callafon R D. Adaptive feedforward control for gust load alleviation[J]. Journal of Guidance, Control, and Dynamic, 2010, 33(3): 862-872.
[9] Raveh D E. Gust-response analysis of free elastic aircraft in the transonic flight regime[J]. Journal of Aircraft, 2011, 48(4): 1204-1211.
[10] Robert E B. Development, verification and use of gust modeling in the nasa computational fluid dynamics code fun3d, NASA/TM-2012-217771[R]. Washington, D. C.: NASA, 2012.
[11] Chen G, Li Y M. Advances and prospects of the reduced order model for unsteady flow and its application[J]. Advances in Mechanics, 2011, 41(6): 686-701 (in Chinese). 陈刚, 李跃明. 非定常流场降阶模型及其应用研究进展与展望[J]. 力学进展, 2011, 41(6): 686-701.
[12] Liu X Y, Yang C, Wu Z G. Wavelet based reduced-order method for unsteady aerodynamics applicable to aeroelasticity[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6): 1149-1155 (in Chinese). 刘晓燕, 杨超, 吴志刚. 适用于气动弹性的小波非定常气动力降阶方法[J]. 航空学报, 2010, 31(6): 1149-1155.
[13] Dillsaver M J, Cesnik C E, Kolmanovsky I V. Gust load alleviation control for very flexible aircraft. AIAA-2011-6368[R]. Reston: AIAA, 2011.
[14] Ma D L. An improvement of the digital simulation method for atmospheric turbulence[J]. Journal of Beijing University of Aeronautics and Astronautics, 1990(3): 57-63 (in Chinese). 马东立.大气紊流数字仿真的改进方法[J]. 北京航空航天大学学报, 1990(3): 57-63.
[15] Yang G W, Wang J K. Gust response prediction with CFD-based reduced order modeling[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(2): 145-153 (in Chinese). 杨国伟, 王济康. CFD结合降阶模型预测阵风响应[J]. 力学学报, 2008, 40(2): 145-153.
[16] Nie X Y, Yang G W. Identification of unsteady aerodynamic model CFD-Based for aeroelastic numerical computation[J]. Journal of Vibration and Shock, 2014, 33(20): 20-25 (in Chinese). 聂雪媛, 杨国伟. 基于CFD气动力辨识模型的气动弹性数值计算[J]. 振动与冲击, 2014, 33(20): 20-25.
[17] Xiong G, Yang C. Application of balanced truncation method on aeroservoelastic model reduction[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(3): 168-170 (in Chinese). 熊纲, 杨超. 平衡截断方法在气动伺服弹性系统模型降阶中的应用[J]. 航空学报, 2001, 22(3): 168-170.
[18] Carson Y J E. Agard standard aeroelastic configurations for dynamic response I-wing 445.6, AGARD-R-756[R]. Washington, D. C.: NASA Langley Research Center, 1988.

文章导航

/