材料工程与机械制造

TC21钛合金稀土渗硼强化表面组织及性能

  • 蔡文俊 ,
  • 卢文壮 ,
  • 王晗 ,
  • 朱延松 ,
  • 左敦稳
展开
  • 1. 南京航空航天大学 机电学院, 南京 210016;
    2. 江苏省精密与微细制造技术重点实验室, 南京 210016
蔡文俊 男, 硕士研究生。主要研究方向: 现代表面技术。 Tel: 025-84892804 E-mail: kangkang0002@hotmail.com;卢文壮 男, 博士, 教授, 博士生导师。主要研究方向: 现代表面技术,智能制造及制造自动化,超硬材料及工具。 Tel: 025-84891686 E-mail: meewzlu@nuaa.edu.cn;王晗 男, 硕士研究生。主要研究方向: 现代表面技术。 Tel: 025-84892804 E-mail: Bestwishes329@126.com;朱延松 男, 博士研究生。主要研究方向: 现代表面技术。 Tel: 025-84891585 E-mail: 64271093@qq.com;左敦稳 男, 博士, 教授, 博士生导师。主要研究方向: 精密加工,微纳米切削加工。 Tel: 025-84890249 E-mail: imit505@nuaa.edu.cn

收稿日期: 2014-05-23

  修回日期: 2014-08-25

  网络出版日期: 2014-09-11

基金资助

国家自然科学基金(51275230);江苏省博士后科研资助计划(1301028B);南京航空航天大学研究生创新基地(实验室)开放基金(kfjj20130216)

Microstructure and property of surface layer produce during rare earths solid-state boriding of TC21 titanium alloy

  • CAI Wenjun ,
  • LU Wenzhuang ,
  • WANG Han ,
  • ZHU Yansong ,
  • ZUO Dunwen
Expand
  • 1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, Nanjing 210016, China

Received date: 2014-05-23

  Revised date: 2014-08-25

  Online published: 2014-09-11

Supported by

National Natural Science Foundation of China (51275230); Sustentation Fund Plan for Post Doctor of Jiangsu (1301028B); Foundation of Graduate Innovation Center in NUAA (kfjj20130216)

摘要

采用单体硼为供硼剂对TC21钛合金表面进行稀土催化表面强化热处理,对渗硼层组织形貌、硬度、磨痕形貌和磨损率进行了研究。结果表明单体硼渗剂中CeO2配比为7wt%左右的渗硼层连续致密,耐磨性较好;温度对于表层TiB2的厚度影响较大,提高温度可显著增大渗硼层厚度,随着保温时间的延长,表层TiB2层逐渐增厚并且更为连续,时间超过一定值后渗硼层厚度增加缓慢;渗硼层表层硬度随渗硼温度提高显著增大,随保温时间延长增加缓慢,渗硼温度在1 000 ℃时渗硼层近表层硬度可达3 200 HV0.01左右,高硬度区域厚度可达20 μm以上;TC21钛合金渗硼层表现出了良好的摩擦磨损性能,渗硼试样的比磨损率比未渗硼试样低50~60倍。

本文引用格式

蔡文俊 , 卢文壮 , 王晗 , 朱延松 , 左敦稳 . TC21钛合金稀土渗硼强化表面组织及性能[J]. 航空学报, 2015 , 36(5) : 1713 -1721 . DOI: 10.7527/S1000-6893.2014.0206

Abstract

The rare earths (RE)-boronizing experiments are carried out for surface strengthening of TC21 titanium alloy. Microstructure, hardness, worn surfaces and specific wear rate of boride layers are studied. Results show that the boride layer with 7wt% content of CeO2 in the agent is continuous and compact and it has better wear resistance. Boronizing temperature has a significant effect on the thickness of TiB2 layer and the thickness of boride layer tends to significantly increase with it. As boronizing time goes on, the TiB2 layer in surface becomes deeper and more continuous, whereas the thickness of boride layer increases slowly after a certain time. The microhardness of top layer is significantly increased by raising boronizing temperature, but it rises gently with time passing. At 1 000 ℃, the microhardness of top layer is about 3 200 HV0.01 and the depth of high microhardness area is over 20 μm. The boride layer has a good wear resistance and specific wear rate of boride layers is 50-60 times lower than that of untreated specimen.

参考文献

[1] Wang Y H, Kou H, Chang H, et al. Phase transformation in TC21 alloy during continuous heating[J]. Journal of Alloys and Compounds, 2009, 472(1): 252-256.
[2] Li H, Qu H L, Zhao Y Q, et al. Effect of lamellar thickness on fatigue crack growth rate of TC21 alloy of damage tolerance[J]. Materials Engineering, 2006(4): 21-23 (in Chinese). 李辉, 曲恒磊, 赵永庆, 等. 片层厚度对损伤容限型TC21合金裂纹扩展速率的影响[J]. 材料工程, 2006(4): 21-23.
[3] Zhao Y Q, Qu H L, Feng L, et al. Research on high strength, high toughness and high damage-tolerant titanium alloy-TC21[J]. Titanium Industry Progress, 2004, 21(1): 22-24 (in Chinese). 赵永庆, 曲恒磊, 冯亮, 等. 高强高韧损伤容限型钛合金TC21研制[J]. 钛工业进展, 2004, 21(1): 22-24.
[4] Du S G, Lv C, Ren J X, et al. Study on surface morphology and microstructure of titanium alloy TC4 under high-speed milling[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6): 1711-1715 (in Chinese). 杜随更, 吕超, 任军学, 等. 钛合金TC4高速铣削表面形貌及表层组织研究[J]. 航空学报, 2008, 29(6): 1711-1715.
[5] Yuan Z X, Yu Z S, Tan P, et al. Effect of rare earths on the carburization of steel[J]. Materials Science and Engineering: A, 1999, 267(1): 162-166.
[6] Zhu Y S, Lu W Z, Wang H, et al. Characteristics of RE-B surface diffusion process on the new damage tolerance TC21 alloy[J]. Rare Metal Materials and Engineering, 2014, 43(3): 692-697 (in Chinese). 朱延松, 卢文壮, 王晗, 等. 新型损伤容限型钛合金TC21稀土催化固体渗硼[J]. 稀有金属材料与工程, 2014, 43(3): 692-697.
[7] Wang H, Lu W Z, Xu J, et al. Effect of rare earth (RE) on pack boronizing process of titanium alloy[J]. Surface Engineering, 2014, 30(2): 123-128.
[8] Yi X H, Fan Z G, Zhang J L, et al. Effects of rare earth on boronizing of TC4 titanium alloy[J]. Journal of the Chinese Rare Earth Society, 2010, 28(5): 607-611 (in Chinese). 衣晓红, 樊占国, 张景垒, 等. 稀土对TC4钛合金固体渗硼的影响研究[J]. 中国稀土学报, 2010, 28(5): 607-611.
[9] Sarma B, Ravi Chandran K S. Accelerated kinetics of surface hardening by diffusion near phase transition temperature: mechanism of growth of boride layers on titanium[J]. Acta Materialia, 2011, 59(10): 4216-4228.
[10] Niu R R, Ge P, Yang G J, et al. Determination of phase transformation point of TC21 titanium alloy[J]. Material & Heat Treatment, 2010, 39(8): 15-16 (in Chinese). 牛蓉蓉, 葛鹏, 杨冠军, 等. TC21钛合金相变点测定[J]. 热加工工艺, 2010, 39(8): 15-16.
[11] Tikekar N M, Ravi Chandran K S, Sanders A. Nature of growth of dual titanium boride layers with nanostructured titanium boride whiskers on the surface of titanium[J]. Scripta Materialia, 2007, 57(3): 273-276.
[12] Sun J S. Wear of metal[M]. Zhang W, translated. Beijing: Metallurgical Industry Press, 1992: 118 (in Chinese). 孙家枢. 金属的磨损[M]. 张卫, 译. 北京: 冶金工业出版社, 1992: 118.
[13] Yao X F, Xie F Q, Han Y, et al. Effect of temperature on wear properties and friction coefficient of TC4[J]. Rare Metal Material and Engineering, 2012, 42(8): 1464-1466 (in Chinese). 姚小飞, 谢发勤, 韩勇, 等. 温度对TC4钛合金磨损性能和摩擦系数的影响[J]. 稀有金属材料与工程, 2012, 42(8): 1464-1466.
[14] Doris K W. What role for contact spots and dislocations in friction and wear?[J]. Wear, 1996, 200(1): 8-29.
[15] Dai J H, Wu X, Song Y, et al. Electronic structure mechanism of martensitic phase transformation in binary titanium alloys[J]. Journal of Applied Physics, 2012, 112(12): 123718.
[16] Guo A H, Cui W F, Liu X H, et al. Wear properties of magnetron sputtering TiN coating on α+β type biomedical Ti6Al7Nb alloy[J]. Rare Metal Material and Engineering, 2009, 38(3): 473-476 (in Chinese). 郭爱红, 崔文芳, 刘向宏, 等. α+β型生物钛合金磁控溅射 TiN 涂层磨损性能[J]. 稀有金属材料与工程, 2009, 38(3): 473-476.
[17] Xu J, Lu W Z, Wang H, et al. Characteristics and wear properties of grinding surface of titanium alloy TC4-DT[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35 (2): 567-573 (in Chinese). 胥军, 卢文壮, 王晗, 等. TC4-DT钛合金磨削表面特性及其摩擦磨损性能[J]. 航空学报, 2014, 35(2): 567-573.

文章导航

/