固体力学与飞行器总体设计

从探测概率的角度评价飞机的隐身性能

  • 陈世春 ,
  • 黄沛霖 ,
  • 姬金祖
展开
  • 北京航空航天大学 航空科学与工程学院, 北京 100191
陈世春 男, 博士研究生。主要研究方向: 飞行器总体设计,飞行器隐身设计。Tel: 010-82317503 E-mail: 36050225csc@sina.com;黄沛霖 男, 博士, 副教授。主要研究方向: 飞行器总体设计,飞行器隐身设计,计算电磁学。Tel: 010-82317503 E-mail: peilin_h@126.com;姬金祖 男, 博士, 讲师。主要研究方向: 飞行器隐身设计,计算电磁学,隐身材料。Tel: 010-82317503 E-mail: jijinzu@buaa.edu.cn

收稿日期: 2014-05-04

  修回日期: 2014-08-15

  网络出版日期: 2014-09-05

Evaluating aircraft's stealth performance from the perspective of detection probability

  • CHEN Shichun ,
  • HUANG Peilin ,
  • JI Jinzu
Expand
  • School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China

Received date: 2014-05-04

  Revised date: 2014-08-15

  Online published: 2014-09-05

摘要

采用雷达散射截面(RCS)均值来衡量飞机的隐身性能并不能给出足够充分的信息,从信号检测概率的角度来衡量飞机的可探测性可以提供更完整的信息。本文从探测概率的角度详细分析了4种典型隐身飞机RCS起伏数据与虚警概率、探测概率、探测距离、信噪比(SNR)等参数间的关系,并给出了完整的推导过程,采用此方法可以对任意飞机目标在给定雷达参数下的可探测性进行准确计算。一般在雷达性能评估中需要用到RCS起伏模型,本文对飞机目标回波信号进行检测分析时采用数值计算方法,信号的概率密度函数(PDF)直接来源于原始回波起伏信号,避免了模型拟合带来的回波特性失真,且不会产生大的计算误差。通过对比分析计算结果发现:单脉冲检测下回波信号均值中值比越大,回波取值范围越小,则信号的检测概率越小,其中均值中值比一般相差3倍以上时可以得到明显不同的检测概率;在快起伏假设下,非相参积累检测的积累脉冲数Nin即便较小,也能得到较大的信噪比增益,此增益可能大于Nin

本文引用格式

陈世春 , 黄沛霖 , 姬金祖 . 从探测概率的角度评价飞机的隐身性能[J]. 航空学报, 2015 , 36(4) : 1150 -1161 . DOI: 10.7527/S1000-6893.2014.0187

Abstract

Since radar cross section (RCS) mean values cannot provide enough information to evaluate aircraft's stealth performance, a method using signal detection probability theory is proposed, which can provide more sufficient information. The relationships between target's RCS data and false alarm probability, detection probability, detection distance, signal to noise ratio (SNR) etc. are derived. Four typical aircrafts' stealth performance is analyzed as examples and any other target's data with certain radar parameters can be analyzed in the same way. Instead of fluctuation models, probability density function (PDF) of target's original RCS data is utilized directly when detection probability is computed numerically; this method can eliminate model fitting error without introducing any unacceptable computation errors. Computation results show that if detection is based on a single observation, the detection probability decreases when target's RCS mean to medium value ratio increases as well as the RCS value range decreases; a significant difference of detection probability can be found when the ratio differs by three times or more; under the assumption of fast fluctuation, incoherent integration gain may be greater than Nin even if Nin is very small; Nin is the number of integration pulses here.

参考文献

[1] Wikipedia. Horten Ho 229[EB/OL]. [ 2014-04-04]. http://en.wikipedia.org/wiki/Horten_Ho_229.
[2] Lee S W, Mittra R. Scattering of electromagnetic waves by a moving cylinder in free space[J]. Canadian Journal of Physics, 1967, 45(9): 2999-3008.
[3] Liu Z H, Huang P L, Wu Z. Frequency response scattering characteristic of aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(4): 643-648 (in Chinese). 刘战合, 黄沛霖, 武哲. 飞行器目标频率响应散射特性[J]. 航空学报, 2009, 30(4): 643-648.
[4] Yang T. Study on demands for suppressing military aircrafts' detectable signature[J]. Electronics Optics & Control, 2011, 18(8): 40-45 (in Chinese). 杨涛. 军用飞机特征信号抑制要求研究[J]. 电光与控制, 2011, 18(8): 40-45.
[5] Johnston S L. Target model pitfalls (illness, diagnosis, and prescription)[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(2): 715-720.
[6] Jamil K, Burkholder R J. Radar scattering from a rolling target floating on a time-evolving rough sea surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(11): 3330-3337.
[7] Shnidman D A. Radar detection probabilities and their calculation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(3): 928-950.
[8] Farina A, Russo A. Radar detection of correlated targets in clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, 22(5): 513-532.
[9] Trueman C W, Kubina S J. Radar cross-section of a generic aircraft at HF frequencies[J]. Canadian Journal of Electrical & Computer Engineering, 1993, 18(2): 59-64.
[10] Shnidman D A. Radar detection in clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(3): 1056-1067.
[11] Ray P, Varshney P K. Radar target detection framework based on false discovery rate[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 1277-1292.
[12] Zikidis K, Skondras A, Tokas C. Low observable principles, stealth aircraft and anti-stealth technologies[J]. Journal of Computations & Modeling, 2014, 4(1): 129-165.
[13] Bahret W. The beginning of stealth technology[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(4): 1377-1385.
[14] Li Y, Wu Z, Huang P L, et al. A new method for analyzing integrated stealth ability of penetration aircraft[J]. Chinese Journal of Aeronautics, 2010, 23(2): 187-193.
[15] Yan B X, Huang J. Stealthy effectiveness of the breaching aircraft[J]. Journal of Yunnan University: Natural Sciences, 2005, 27(5A): 127-135 (in Chinese). 颜丙新, 黄俊. 突防飞机的隐身效能分析[J]. 云南大学学报: 自然科学版, 2005, 27(5A): 127-135.
[16] Barton D K. Radar system analysis[M]. New Jersey: Prentice-Hall Inc., 1964: 26-27, 73-75.
[17] Mahafza B R, Elsherbeni A Z. MATLAB simulations for radar systems design[M]. Zhu F G, Huang X T, Li X Y, et al., translated. Beijing: Publishing House of Electronics Industry, 2009: 58 (in Chinese). Mahafza B R, Elsherbeni A Z. 雷达系统设计MATLAB仿真[M]. 朱富国, 黄晓涛, 黎向阳, 等, 译. 北京: 电子工业出版社, 2009: 58.
[18] Difranco J V, Rubin W L. Radar detection[M]. New Jersey: Prentice-Hall Inc., 1968: 289-394.
[19] Zhang X, Ye L W, Li S H, et al. Aerial radar theory[M]. Beijing: National Defense Industry Press, 2012: 199-206, 271 (in Chinese). 张欣, 叶灵伟, 李淑华, 等. 航空雷达原理[M]. 北京: 国防工业出版社, 2012: 199-206, 271.
[20] Marcum J I. A statistical theory of target detection by pulsed radar, Rand Research Memo. RM-754[R]. Santa Monica, CA: Rand Corporation, 1947.
[21] Richards M A. Fundamentals of radar signal processing[M]. Xing M D, Wang T, Li Z F, et al., translated. Beijing: Publishing House of Electronics Industry, 2008: 53 (in Chinese). Richards M A. 雷达信号处理基础[M]. 邢孟道, 王彤, 李真芳, 等, 译. 北京: 电子工业出版社, 2008: 53.
[22] Urkowitz H. A closed form for the noncoherent gain factor[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(2): 943-944.
[23] Curry G R. Radar system performance modeling[M]. 2nd ed. Norwood, MA: Artech House Inc., 2005: 95-97.
[24] Stimson G W. Introduction to airborne radar[M]. 2nd ed. New Jersey: Scitech Publishing Inc., 1998: 131-135.

文章导航

/