综述

碳纳米管有序增强体及其复合材料研究进展

  • 李敏 ,
  • 王绍凯 ,
  • 顾轶卓 ,
  • 张佐光
展开
  • 北京航空航天大学 材料科学与工程学院 空天材料与服役教育部重点实验室, 北京 100191
李敏 女,博士,副教授,博士生导师。主要研究方向:高性能碳纤维/树脂作用机制与界面性能,碳纳米管纤维/巴基纸复合材料,复合材料先进制造与工艺优化。 Tel:010-82339800 E-mail:leemy@buaa.edu.cn

收稿日期: 2014-05-19

  修回日期: 2014-07-07

  网络出版日期: 2014-07-18

基金资助

国家自然科学基金(51103003)

Research Progress on Macroscopic Carbon Nanotube Assemblies and Their Composites

  • LI Min ,
  • WANG Shaokai ,
  • GU Yizhuo ,
  • ZHANG Zuoguang
Expand
  • Key Laboratory of Aerospace Advanced Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191, China

Received date: 2014-05-19

  Revised date: 2014-07-07

  Online published: 2014-07-18

Supported by

National Natural Science Foundation of China (51103003)

摘要

碳纳米管(CNT)是迄今为止力学性能最高的轻质材料之一,同时兼具优异的导电性和导热性,作为新一代高性能增强材料具有难以估量的发展潜力。特别是以连续碳纳米管纤维和碳纳米管膜为代表与树脂复合制得的连续碳纳米管复合材料,被公认为是具有划时代意义的第3代先进复合材料。本文围绕连续碳纳米管纤维、碳纳米管膜及其与树脂复合形成的复合材料,介绍其制备方法、控制技术、结构特点、力学与功能特性等国内外研究进展,揭示了碳纳米管有序增强体中独特的多级结构特征与多级复合强化机制,阐述了该复合材料应用特色,并展望其应用前景与潜能,以期为碳纳米管纤维复合材料革新未来航空航天超轻结构的多功能化设计与研究提供参考。

本文引用格式

李敏 , 王绍凯 , 顾轶卓 , 张佐光 . 碳纳米管有序增强体及其复合材料研究进展[J]. 航空学报, 2014 , 35(10) : 2699 -2721 . DOI: 10.7527/S1000-6893.2014.0146

Abstract

Carbon nanotube is considered to be one of the strongest lightweight materials with superior strength and modulus, extraordinary electrical and thermal conductivity. As next-generation reinforcement, carbon nanotube exhibits great potential in polymer composites. Especially, the nanocomposites reinforced by typical carbon nanotube assemblies, carbon nanotube fiber and film, have been recognized as the third-generation advanced composites. This paper reviews recent progress on the continuous carbon nanotube fiber, film and their polymer composites, including their preparation methods, quality control, microstructure, mechanical and physical properties. The multiple-level microstructure of nanocomposite is analyzed and mechanical enhancement mechanism is revealed. The nanocomposite shows great application prospect for electromagnetic interference shielding, fire retardancy, electrical and thermal conductivity, and so on. This review will provide some references for the multi-functional application of carbon nanotube nanocomposites in the future aeronautic and astronautic structures.

参考文献

[1] Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(7): 56-58.

[2] Li Q, Zhang X, DePaula R F, et al. Sustained growth of ultralong carbon nanotube arrays for fiber spinning[J]. Advanced Materials, 2006, 18: 3160-3163.

[3] Zhang R, Zhang Y, Zhang Q, et al. Growth of half-meter long carbon nanotubes based on Schulz-Flory distribution[J]. ACS Nano, 2013, 7(7): 6156-6161.

[4] Fu S Y,Chen Z K, Hong S, et al. The reduction of carbon nanotube (CNT) length during the manufacture of CNT/polymer composites and a method to simultaneously determine the resulting CNT and interfacial strengths[J]. Carbon, 2009, 47(14): 3192-3200.

[5] Seyhana A T,Tanoglub M,Schultec K. Tensile mechanical behavior and fracture toughness of MWCNT and DWCNT modified vinyl-ester/polyester hybrid nanocomposites produced by 3-roll milling[J]. Materials Science and Engineering: A, 2009, 523(1-2): 85-92.

[6] Thostenson E T, Li W Z, Wang D Z, et al. Carbon nanotube/carbon fiber hybrid multiscale compo-sites[J]. Journal of Applied Physics, 2002, 91(9): 6034-6037.

[7] Veedu V P, Cao A Y, Li X S, et al. Multifunctional composites using reinforced laminae with carbon-nanotube forests[J]. Nature Materials, 2006, 5: 457-462.

[8] Wicks S S, de Villoria R G, Wardle B L. Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes[J]. Composites Science and Technology, 2010, 70(1): 20-28.

[9] Blanco J, Garcia E J, Guzman R, et al. Limiting mechanisms of mode I interlaminar toughening of composites reinforced with aligned carbon nano-tubes[J]. Journal of Composite Materials, 2009, 43(8): 825-841.

[10] Moaseri E, Karimi M, Maghrebi M, et al. Two-fold enhancement in tensile strength of carbon nanotube-carbon fiber hybrid epoxy composites through combination of electrophoretic deposition and alternating electric field[J]. International Journal of Solids and Structures, 2014, 51(3-4): 774-785.

[11] Vigolo B, Penicaud A, Coulon C, et al. Macroscopic fibers and ribbons of oriented carbon nanotubes[J]. Science, 2000, 290(5495): 1331-1334.

[12] Ericson L M, Fan H, Peng H, et al. Macroscopic, neat, single-walled carbon nanotube fibers[J]. Science, 2004, 305(5689): 1447-1450.

[13] Behabtu N, Young C C, Tsentalocich D E, et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity[J]. Science, 2013, 339(6116): 182-186.

[14] Liu K, Sun Y, Liu P, et al. Periodically striped films pro-duced from super-aligned carbon nanotube arrays[J]. Nanotechnology, 2009, 20(33): 335705.

[15] Jiang K, Li Q, Fan S. Nanotechnology: Spinning continuous carbon nanotube yarns[J]. Nature, 2002, 419(6909): 801.

[16] Zhang M, Atkinson K R, Baughman R H. Multifunctional carbon nanotube yarns by downsizing an ancient technology[J]. Science, 2004, 306(5700): 1358-1361.

[17] Zhang X, Li Q, Holesinger T G, et al. Ultrastrong, stiff, and lightweight carbon-nanotube fibers[J]. Advanced Materials, 2007, 19(23): 4198-4201.

[18] Jia J, Zhao J, Xu G, et al. A comparison of the mechanical properties of fibers spun from different carbon nano-tubes[J]. Carbon, 2011, 49(4): 1333-1339.

[19] Fang C, Zhao J, Jia J, et al. Enhanced carbon nanotube fibers by polyimide[J]. Applied Physics Letters, 2010, 97(18): 1819061-1819063.

[20] Zhu H W, Xu C L, Wu D H, et al. Direct synthesis of long single-walled carbon nanotube strands[J]. Science, 2002, 296(5569): 884-886.

[21] Li Y L, Kinloch I A, Windle A H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis[J]. Science, 2004, 304(5668): 276-278.

[22] Zhong X, Li Y, Liu Y, et al. Continuous multilayered carbon nanotube yarns[J]. Advanced Materials, 2010, 22(6): 692-696.

[23] Non-woven sheets and mats provide structure and conductivity [EB/OL]. [2014-07-29]. http://www.nanocomptech.com.

[24] Sears K, Skourtis C, Atkinson K, et al. Focused ion beam milling of carbon nanotube yarns to study the relationship between structure and strength[J]. Carbon, 2010, 48(15): 4450-4456.

[25] Jia J J. Spinning technique and interphase characteristic of continuous carbon nanotube[D]. Beijing: Beihang University, 2011. (in Chinese) 贾晶晶. 连续碳纳米管纤维制备及其树脂复合体系界面特性研究[D]. 北京: 北京航空航天大学, 2011.

[26] Li S, Zhang X, Zhao J, et al. Enhancement of carbon nanotube fibres using different solvents and polymers [J]. Composites Science and Technology, 2012, 72(12): 1402-1407.

[27] Dalton A, Collins S, Munoz E, et al. Super-tough carbon-nanotube fibres[J]. Nature, 2003, 423(6941): 703.

[28] Kozlov M, Capps R, Sampson W, et al. Spinning solid and hollow polymer-free carbon nanotube fibers[J]. Advanced Materials, 2005, 17(5): 614-617.

[29] Zhang S, Koziol K, Kinloch I A, et al. Macroscopic fibers of well-aligned carbon nanotubes by wet spinning[J]. Small, 2008, 4(8): 1217-1222.

[30] Davis V, Parra-Vasquez A, Green M, et al. True solutions of single-walled carbon nanotubes for assembly into macroscopic materials[J]. Nature Nanotechnology, 2009, 4(12): 830-834.

[31] Zhang X, Li Q, Tu Y, et al. Strong carbon-nanotube fibers spun from long carbon-nanotube arrays[J]. Small, 2007, 3(2): 244-248.

[32] Liu K, Sun Y, Zhou R, et al. Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method[J]. Nanotechnology, 2010, 21(4): 045708.

[33] Zhang S, Zhu L, Minus M L, et al. Solid-state spun fibers and yarns from 1-mm long carbon nanotube forests synthesized by water-assisted chemical vapor deposition[J]. Journal of Materials Science, 2008, 43(13): 4356-4362.

[34] Ryu S, Lee Y, Hwang J W, et al. High-strength carbon nanotube fibers fabricated by infiltration and curing of mussel-inspired catecholamine polymer[J]. Advanced Materials, 2011, 23(17): 1971-1975.

[35] Liu K, Sun Y, Lin X, et al. Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns[J]. ACS Nano, 2010, 4(10): 5827-5834.

[36] Tran C, Lucas S, Phillips D, et al. Manufacturing poly-mer/carbon nanotube composite using a novel direct process[J]. Nanotechnology, 2011, 22(14): 145302.

[37] Koziol K, Vilatela J, Moisala A, et al. High-performance carbon nanotube fiber[J]. Science, 2007, 318(5858): 1892-1895.

[38] Ma W, Liu L, Yang R, et al. Monitoring a micromechan-ical process in macroscale carbon nanotube films and fibers[J]. Advanced Materials, 2009, 21(5): 603-608.

[39] Ma W, Liu L, Zhang Z, et al. High-strength composite fibers: realizing true potential of carbon nanotubes in polymer matrix through continuous reticulate architecture and molecular level couplings[J]. Nano Letters, 2009, 9(8): 2855-2861.

[40] Liu J, Rinzler A G, Dai H J, et al. Fullerene pipes[J]. Science, 1998, 280(5367): 1253-1256.

[41] Casavant M J, Walters D A, Schmidt J J, et al. Neat macroscopic membranes of aligned carbon nanotubes[J]. Journal of Applied Physics, 2003, 93(4): 2153-2156.

[42] Chen I W P, Liang Z, Wang B, et al. Charge-induced asymmetrical displacement of an aligned carbon nanotube buckypaper actuator[J]. Carbon, 2010, 48(4): 1064-1069.

[43] Tian Y, Park J G, Cheng Q, et al. The fabrication of single-walled carbon nanotube/polyelectrolyte multi-layercomposites by layer-by-layer assembly and magnetic field assisted alignment[J]. Nanotechnology, 2009, 20(33): 335601.

[44] Liu Q, Li M, Wang Z, et al. Improvement on the tensile performance of buckypaper using a novel dispersant and functionalized carbon nanotubes[J]. Composite Part A: Applied Science and Manufacturing, 2013, 55: 102-109.

[45] Guo J, Li M, Liu Q, et al, Influence of oxidation and distribution of carbon nanotube on mechanical properties of buckypaper/epoxycomposites[J]. Journal of Reinforced Plasticsand Composites, 2013, 32(4): 248-257.

[46] Lopes P E, Hattum F, Pereira C M C, et al. High CNT content composites with CNT buckypaper and epoxy resin matrix: impregnation behaviour composite production and characterization[J]. Composite Structure, 2010, 92(6): 1291-1298.

[47] Rigueur J, Hasan S, Mahajan S. Buckypaper fabrication by liberation of electrophoretically deposited carbon nanotubes[J]. Carbon, 2010, 48(14): 4090-4099.

[48] Zhang X W. Hydroentangling: A novel approach to high-speed fabrication of carbon nanotube membranes[J]. Advanced Materials, 2008, 20(21): 4140-4144.

[49] Wang D, Song P. Highly oriented carbon nanotube papers made of aligned carbon nanotubes[J]. Nanotechnology, 2008, 19(7): 075609-075615.

[50] Bradford P D, Wang X, Zhao H B, et al. A novel approach to fabricate high volume fraction nanocomposites with longaligned carbon nanotubes[J]. Composites Science and Technology, 2010, 70(13): 1980-1985.

[51] Zhang M, Fang S, Zakhidov A A, et al. Strong, transpa-rent, multifunctional, carbon nanotube sheets[J]. Science, 2005, 309 (5738): 1215-1219.

[52] Zhang L, Zhang G, Liu C H, et al. High-density carbon nanotube buckypapers with superior transport and mechanical properties[J]. Nano Letter, 2012, 12(9): 4848-4852.

[53] Di J, Hu D, Chen H, et al. Ultrastrong, foldable, and highly conductive carbon nanotube film[J]. ACS Nano, 2012, 6(6): 5457-5464.

[54] Liu W, Zhang X H, Xu G, et al. Producing superior composites by winding carbon nanotubes onto a mandrel under a poly(vinyl alcohol) spray[J]. Carbon, 2011, 49(14): 4786-4791.

[55] Liu Y N, Li M, Gu Y, et al. A modified spray-winding approach to enhance the tensile performance of array-based carbon nanotube composite films[J]. Carbon, 2013,65: 187-195.

[56] Wang X, Yong Z Z, Li Q W, et al. Ultrastrong, stiff and multifunctional carbon nanotube composites[J]. Materials Research Letters, 2013, 1(1): 19-25.

[57] Liu Q, Li M, Gu Y, et al. Highly aligned dense carbon nanotube sheets induced by multiple stretching and pressing[J]. Nanoscale, 2014, 6(8): 4338-4344.

[58] Cheng Q F, Bao J W, Park J G, et al. High gechanical performance composite conductor: multi-walled carbon nanotube sheet/bismaleimide nanocomposites[J]. Advanced Functional Materials, 2009, 19(20): 3219-3225.

[59] Fischer J E, Dai H, Thess A, et al. Metallic resistivity in crystalline ropes of single-wall carbon nanotubes[J]. Physical Review B, 1997, 55(8): 4921-4924.

[60] Baughman R H, Cui C X, Zakhidov A A, et al. Carbon nanotube actuators[J]. Science, 1999, 284(5418): 1340-1344.

[61] Whitten P G, Gestos A A, Spinks G M, et al. Free standing carbon nanotube composite bio-electrodes[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2007, 82(1): 37-43.

[62] Spitalsky Z, Aggelopoulos C, Tsoukleri G, et al. The effect of oxidation treatment on the properties of multi-walled carbon nanotube thin films[J]. Materials Science and Engineering: B, 2009, 165(3): 135-138.

[63] Xu G, Zhang Q, Zhou W, et al. The feasibility of produc-ing MWCNT paper and strong MWCNT film from VACNT array[J]. Applied Physics A, 2008, 92(3): 531-539.

[64] Park J, Smithyman J, Lin C, et al. Effects of surfactants and alignment on the physical properties of single-walled carbon nanotube buckypaper[J]. Journal of Applied Physics, 2009, 106(10): 104310.

[65] Cheng Q, Li M, Jiang L, et al. Bioinspired layered composites based on flattened double-walled carbon nanotubes[J]. Advanced Materials, 2012, 24(14): 1838-1843.

[66] Cheng Q, Wang B, Zhang C, et al. Functionalized carbon-nanotube sheet/bismaleimide nanocomposites: Mechanical and electrical performance beyond carbon-fiber composites[J]. Small, 2010, 6(6): 763-767.

[67] Zhang X, Li Q. Enhancement of friction between carbon nanotubes: An efficient strategy to strengthen fibers[J]. ACS Nano, 2009, 4(1): 312-316.

[68] Vilatela J J, Elliott J A, Windle A H. A model for the strength of yarn-like carbon nanotube fibers[J]. ACS Nano, 2011, 5(3): 1921-1927.

[69] Beyerlein I J, Porwal P K, Zhu Y T, et al. Scale and twist effects on the strength of nanostructured yarns and reinforced composites[J]. Nanotechnology, 2009, 20(48): 485702.

[70] Liu X, Lu W, Yang Q, et al. Microstructural evolution of carbon nanotube fibers: deformation and strength mechanism[J]. Nanoscale, 2013, 5(5): 2002-2008.

[71] Vilatela J J, Windle A H. Yarn-like carbon nanotube fibers[J]. Advanced Materials, 2010, 22(44): 4959-4963.

[72] Zu M, Lu W, Li Q, et al. Characterization of carbon nanotube fiber compressive properties using tensile recoil measurement[J]. ACS Nano, 2012, 6(5): 4288-4297.

[73] Gao Y, Li J, Liu L, et al. Axial compression of hierarchically structured carbon nanotube fiber embedded in epoxy[J]. Advanced Functional Materials, 2010, 20(21): 3797-3803.

[74] Wu A S, Nie X, Hudspeth M C, et al. Strain ratedependent tensile properties and dynamic electromechanical response of carbon nanotube fibers[J]. Carbon, 2012, 50(10): 3876-3881.

[75] Li Q, Li Y, Zhang X, et al. Structure-dependent electrical properties of carbon nanotube fibers[J]. Advanced Materials, 2007, 19(20): 3358-3363.

[76] Badaire S, Pichot V, Zakri C, et al. Correlation of properties with preferred orientation in coagulated and stretch-aligned single-wall carbon nanotubes[J]. Journal of Applied Physics, 2004, 96(12): 7509-7513.

[77] Miao M. Electrical conductivity of pure carbon nanotube yarns[J]. Carbon, 2011, 49(12): 3755-3761.

[78] Park J, Louis J, Cheng Q, et al. Electromagnetic interfe-rence shielding properties of carbon nanotube buckypa-per composites[J]. Nanotechnology, 2009, 20(41): 415702.

[79] Jakubinek M, Johnson M, White M, et al. Thermal and electrical conductivity of array-spun multi-walled carbon nanotube yarns[J]. Carbon, 2012, 50(1): 244-248.

[80] Mirfakhrai T, Oh J, Kozlov M, et al. Electrochemical actuation of carbon nanotube yarns[J]. Smart Materials and Structures, 2007, 16(2): 243-249.

[81] Mirfakhrai T, Krishna-Prasad R, Nojeh A, et al. Elec-tromechanical actuation of single-walled carbon nano-tubes: an ab initio study[J]. Nanotechnology, 2008, 19(31): 315706.

[82] Deng F, Lu W, Zhao H. The properties of dry-spun car-bon nanotube fibers and their interfacial shear strength in an epoxy composite[J]. Carbon, 2011, 49(5): 1752-1757.

[83] Liu Y, Li M, Gu Y, et al. The interfacial strength and fracture characteristics of ethanol and polymer modified carbon nanotube fibers in their epoxy composites[J]. Carbon, 2013, 52: 550-558.

[84] Zu M, Li Q, Zhu Y. The effective interfacial shear strength of carbon nanotube fibers in an epoxy matrix characterized by a microdroplet test[J]. Carbon, 2012, 50(3): 1271-1279.

[85] Díez-Pascual A M, Gascón D. Carbon nanotube buckypaper reinforced acrylonitrile-butadiene-styrene composites for electronic applications[J]. ACS Applied Materials and Interfaces, 2013, 5(22): 12107-12119.

[86] Xing Y, Zhang X, Chen H, et al. Enhancing buckypaper conductivity through co-deposition with copper nanowires[J]. Carbon, 2013, 61: 501-506.

[87] Zhang J, Jiang D, Peng H X, et al. Enhanced mechanical and electrical properties of carbon nanotube buckypaper by in situ cross-linking[J]. Carbon, 2013, 63: 125-132.

[88] Zhao Y, Wei J, Vajtai R, et al. Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals[J]. Scientific Reports, 2011, 1: 83.

[89] LeGault M R. Near commercialization: CNT yarn, tape and sheet [EB/OL]. (2012-01-02)[2014-07-29]. http://www. compositesworld.com/articles/near-commercialization-cnt-yarn-tape-and-sheet.

[90] Gagné M, Therriault D. Lightning strike protection of composites[J]. Progress in Aerospace Sciences, 2014, 64: 1-16.

文章导航

/